Environmental Science and Pollution Research

, Volume 24, Issue 4, pp 3790–3801 | Cite as

Modulatory effects of Zn2+ ions on the toxicity of citrate- and PVP-capped gold nanoparticles towards freshwater algae, Scenedesmus obliquus

  • V. Iswarya
  • J.B. Johnson
  • Abhinav Parashar
  • Mrudula Pulimi
  • N. Chandrasekaran
  • Amitava MukherjeeEmail author
Research Article


Gold nanoparticles (GNPs) are widely used for medical purposes, both in diagnostics as well as drug delivery, and hence are prone to release and distribution in the environment. Thus, we have explored the effects of GNPs with two distinct surface capping (citrate and PVP), and three different sizes (16, 27, and 37 nm) at 0.01-, 0.1-, and 1-mg L−1 concentrations on a predominant freshwater alga Scenedesmus obliquus in the sterile freshwater matrix. We have also investigated how an abundant metal ion from freshwater, i.e., Zn2+ ions may modulate the effects of the selected GNPs (40 nm, citrate, and PVP capped). Preliminary toxicity results revealed that gold nanoparticles were highly toxic in comparison to zinc ions alone. A significant modulation in the toxicity of Zn ions was not noticed in the presence of GNPs. In contrast, zinc ions minimized the toxicity produced by GNPs (both CIT-37 and PVP-37), despite its individual toxicity. Approximately, about 42, 33, and 25% toxicity reduction was noted at 0.05-, 0.5-, and 5-mg L−1 Zn ions, respectively, for CIT-37 GNPs, while 31% (0.05 mg L−1), 24% (0.5 mg L−1), and 9% (5 mg L−1) of toxicity reduction were noted for PVP-37 GNPs. Maximum toxicity reduction was seen at 0.05 mg L−1 of Zn ions. Abbott modeling substantiated antagonistic effects offered by Zn2+ ions on GNPs. Stability and sedimentation data revealed that the addition of zinc ions gradually induced the aggregation of NPs and in turn significantly reduced the toxicity of GNPs. Thus, the naturally existing ions like Zn2+ have an ability to modulate the toxicity of GNPs in a real-world environment scenario.


Gold nanoparticles (GNPs) Size Surface capping Zinc ions Freshwater Scenedesmus obliquus 



We sincerely thank PSG-IAS, Coimbatore, TN, India, for the TEM analysis.

Compliance with ethical standards

The authors declare that they have no conflict of interest.

Supplementary material

11356_2016_8131_MOESM1_ESM.docx (68 kb)
ESM 1 (DOCX 68 kb)


  1. Abbott MB, Bathurst JC, Cunge JA, O'Connell PE, Rasmussen J (1986) An introduction to the European hydrological system—Systeme Hydrologique Europeen, “SHE”, 1: history and philosophy of a physically-based, distributed modelling system. J Hydrol 87(1):45–59CrossRefGoogle Scholar
  2. Albanese A, Chan WC (2011) Effect of gold nanoparticle aggregation on cell uptake and toxicity. ACS Nano 5(7):5478–5489CrossRefGoogle Scholar
  3. Ali M, Hashim U, Mustafa S, Man Y, Islam KN (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 2012:1Google Scholar
  4. Alkilany AM, Murphy CJ (2010) Toxicity and cellular uptake of gold nanoparticles: what we have learned so far? J Nanopart Res 12(7):2313–2333CrossRefGoogle Scholar
  5. Aravind P, Prasad MNV (2005) Modulation of cadmium-induced oxidative stress in Ceratophyllum demersum by zinc involves ascorbate–glutathione cycle and glutathione metabolism. Plant Physiol Biochem 43(2):107–116CrossRefGoogle Scholar
  6. Auffan M, Bottero JY, Chaneac C, Rose J (2010) Inorganic manufactured nanoparticles: how their physicochemical properties influence their biological effects in aqueous environments. Nanomedicine 5(6):999–1007CrossRefGoogle Scholar
  7. Auffan M, Rose J, Bottero JY, Lowry GV, Jolivet JP, Wiesner MR (2009) Towards a definition of inorganic nanoparticles from an environmental, health and safety perspective. Nat Nanotechnol 4(10):634–641CrossRefGoogle Scholar
  8. Badawy AME, Luxton TP, Silva RG, Scheckel KG, Suidan MT, Tolaymat TM (2010) Impact of environmental conditions (pH, ionic strength, and electrolyte type) on the surface charge and aggregation of silver nanoparticles suspensions. Environ Sci Technol 44(4):1260–1266CrossRefGoogle Scholar
  9. Behra R, Wagner B, Sgier L, Kistler D (2015) Colloidal stability and toxicity of gold nanoparticles and gold chloride on Chlamydomonas reinhardtii. Aqaut Geochem 21(2):331–342CrossRefGoogle Scholar
  10. Bodar CW, Pronk ME, Sijm DT (2005) The European Union risk assessment on zinc and zinc compounds: the process and the facts. Integr Environ Assess Manag 1:301–319CrossRefGoogle Scholar
  11. Bray TM, Bettger WJ (1990) The physiological role of zinc as an antioxidant. Free Radic Biol Med 8(3):281–291CrossRefGoogle Scholar
  12. Bozich JS, Lohse SE, Torelli MD, Murphy CJ, Hamers RJ, Klaper RD (2014) Surface chemistry, charge and ligand type impact the toxicity of gold nanoparticles to Daphnia magna. Environmental Science: Nano 1(3):260–270Google Scholar
  13. Brown SD, Nativo P, Smith J-A, Stirling D, Edwards PR, Venugopal B, Flint DJ, Plumb JA, Graham D, Wheate NJ (2010) Gold nanoparticles for the improved anticancer drug delivery of the active component of oxaliplatin. J Am Chem Soc 132(13):4678–4684CrossRefGoogle Scholar
  14. Campbel PGC, Stokes PM (1985) Acidification and toxicity of metals to aquatic biota. Can J Fish Aquat Sci 42(12):2034–2049CrossRefGoogle Scholar
  15. Chesworth J, Donkin M, Brown M (2004) The interactive effects of the antifouling herbicides irgarol 1051 and diuron on the seagrass Zostera marina (L.). Aquat Toxicol 66(3):293–305CrossRefGoogle Scholar
  16. Coradeghini R, Gioria S, García CP, Nativo P, Franchini F, Gilliland D, Ponti J, Rossi F (2013) Size-dependent toxicity and cell interaction mechanisms of gold nanoparticles on mouse fibroblasts. Toxicol Lett 217(3):205–216CrossRefGoogle Scholar
  17. Cumberland SA, Lead JR (2009) Particle size distribution of silver nanoparticles at environmentally relevant conditions. J Chromatogr A 1216:7CrossRefGoogle Scholar
  18. Dalai S, Pakrashi S, Kumar RS, Chandrasekaran N, Mukherjee A (2012) A comparative cytotoxicity study of TiO2 nanoparticles under light and dark conditions at low exposure concentrations. Toxicol Res 1(2):116–130CrossRefGoogle Scholar
  19. Dalai S, Pakrashi S, Bhuvaneshwari M, Iswarya V, Chandrasekaran N, Mukherjee A (2014) Toxic effect of Cr(VI) in presence of n-TiO2 and n-Al2O3 particles towards freshwater microalgae. Aquat Toxicol 146:28–37CrossRefGoogle Scholar
  20. Dedkova K, Bures Z, Palarcík J, Vlcek M, Kukutschova J (2014) Acute toxicity of gold nanoparticles to freshwater green algae. In: In: conference NanoCon, Nov 5the7th. Czech Republic, BrnoGoogle Scholar
  21. Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21(11):2412–2422CrossRefGoogle Scholar
  22. Frens G (1973) Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241(105):20–22Google Scholar
  23. Gilroy KD, Neretina S, Sanders RW (2014) Behavior of gold nanoparticles in an experimental algal–zooplankton food chain. J Nanopart Res 16(5):1–8CrossRefGoogle Scholar
  24. Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Part Fibre Toxicol 11(1):1CrossRefGoogle Scholar
  25. Goodman CM, McCusker CD, Yilmaz T, Rotello VM (2004) Toxicity of gold nanoparticles functionalized with cationic and anionic side chains. Bioconjug Chem 15(4):897–900CrossRefGoogle Scholar
  26. Gottschalk F, Sonderer T, Scholz RW, Nowack B (2009) Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different regions. Environ Sci Technol 43(24):9216–9222CrossRefGoogle Scholar
  27. Guo Y, Zhang Y, Shao H, Wang Z, Wang X, Jiang X (2014) Label-free colorimetric detection of cadmium ions in rice samples using gold nanoparticles. Anal Chem 86(17):8530–8534CrossRefGoogle Scholar
  28. Hafeez B, Khanif YM, Saleem M (2013) Role of zinc in plant nutrition—a review. American Journal of Experimental Agriculture 3(2):374CrossRefGoogle Scholar
  29. Harris PO, Ramelow GJ (1990) Binding of metal ions by particulate biomass derived from Chlorella vulgaris and Scenedesmus quadricauda. Environ Sci Technol 24(2):220–228CrossRefGoogle Scholar
  30. Hitchman A, Smith GHS, Ju-Nam Y, Sterling M, Lead JR (2013) The effect of environmentally relevant conditions on PVP stabilised gold nanoparticles. Chemosphere 90(2):410–416CrossRefGoogle Scholar
  31. Hu J, Wang D, Forthaus BE, Wang J (2012) Quantifying the effect of nanoparticles on as (V) ecotoxicity exemplified by nano-Fe2O3 (magnetic) and nano-Al2O3. Environ Toxicol Chem 31(12):2870–2876CrossRefGoogle Scholar
  32. Iswarya V, Manivannan J, De A, Paul S, Roy R, Johnson J, Kundu R, Chandrasekaran N, Mukherjee A, Mukherjee A (2015) Surface capping and size-dependent toxicity of gold nanoparticles on different trophic levels. Environ Sci Pollut Res:1–15Google Scholar
  33. Iswarya V, Bhuvaneshwari M, Chandrasekaran N, Mukherjee A (2016) Individual and binary toxicity of anatase and rutile nanoparticles towards Ceriodaphnia dubia. Aquat Toxicol 178:209–221CrossRefGoogle Scholar
  34. Kahru A, Dubourguier HC, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8(8):5153–5170CrossRefGoogle Scholar
  35. Kasemets K, Ivask A, Dubourguier H-C, Kahru A (2009) Toxicity of nanoparticles of ZnO, CuO and TiO2 to yeast Saccharomyces cerevisiae. Toxicol in Vitro 23(6):1116–1122CrossRefGoogle Scholar
  36. Kim I, Lee BT, Kim HA, Kim KW, Kim SD, Hwang YS (2016) Citrate coated silver nanoparticles change heavy metal toxicities and bioaccumulation of Daphnia magna. Chemosphere 143:99–105CrossRefGoogle Scholar
  37. Kim K-T, Zaikova T, Hutchison JE, Tanguay RL (2013) Gold nanoparticles disrupt zebrafish eye development and pigmentation. Toxicol Sci 133(2):275–288CrossRefGoogle Scholar
  38. Kumar D, Santhanam P, Ananth S, Devi AS, Nandakumar R, Prasath BB, Jeyanthi S, Jayalakshmi T, Ananthi P (2014) Effect of different dosages of zinc on the growth and biomass in five marine microalgae. Int J Fish Aquac 6(1):1–8CrossRefGoogle Scholar
  39. Larguinho M, Correia D, Diniz MS, Baptista PV (2014) Evidence of one-way flow bioaccumulation of gold nanoparticles across two trophic levels. J Nanopart Res 16(8):1–11CrossRefGoogle Scholar
  40. Luoma SN, Rainbow PS (2008) Metal contamination in aquatic environments: science and lateral management. Cambridge University Press, New YorkGoogle Scholar
  41. Maurer-Jones MA, Gunsolus IL, Murphy CJ, Haynes CL (2013) Toxicity of engineered nanoparticles in the environment. Anal Chem 85(6):3036–3049CrossRefGoogle Scholar
  42. Monteiro CM, Fonseca SC, Castro PM, Malcata FX (2011) Toxicity of cadmium and zinc on two microalgae, Scenedesmus obliquus and Desmodesmus pleiomorphus, from northern Portugal. J Appl Phycol 23(1):97–103CrossRefGoogle Scholar
  43. Moore MN (2006) Do nanoparticles present ecotoxicologiocal risks for the health of the aquatic environment? Environ Int 32:967–976CrossRefGoogle Scholar
  44. Naito W, Kamo M, Tsushima K, Iwasaki Y (2010) Exposure and risk assessment of zinc in Japanese surface waters. Sci Total Environ 408:4271–4284CrossRefGoogle Scholar
  45. Nur Y (2013) Gold nanoparticles: synthesis, characterisation and their effect on Pseudomonas flourescens. University of BirminghamGoogle Scholar
  46. OECD (2011) Test no 201: freshwater alga and cyanobacteria, growth inhibition test. OECD guidelines for the testing of chemicals. OECD Publishing ParisGoogle Scholar
  47. Omar H (2002) Bioremoval of zinc ions by Scenedesmus obliquus and Scenedesmus quadricauda and its effect on growth and metabolism. Int Biodeterior Biodegrad 50(2):95–100CrossRefGoogle Scholar
  48. Pakrashi S, Dalai S, Prathna T, Trivedi S, Myneni R, Raichur AM, Chandrasekaran N, Mukherjee A (2013) Cytotoxicity of aluminium oxide nanoparticles towards fresh water algal isolate at low exposure concentrations. Aquat Toxicol 132:34–45CrossRefGoogle Scholar
  49. Pan Y, Neuss S, Leifert A, Fischler M, Wen F, Simon U, Schmid G, Brandau W, Jahnen-Dechent W (2007) Size-dependent cytotoxicity of gold nanoparticles. Small 3(11):1941–1949CrossRefGoogle Scholar
  50. Perrault SD, Chan WCW (2010) In vivo assembly of nanoparticle components to improve targeted cancer imaging. Proc Natl Acad Sci 107(25):11194–11199CrossRefGoogle Scholar
  51. Priyadarshini E, Pradhan N (2017) Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: a review. Sens Actuators B Chem 238:888–902CrossRefGoogle Scholar
  52. Rana S, Kalaichelvan PT (2013) Ecotoxicity of nanoparticles. ISRN toxicology 2013Google Scholar
  53. Renault S, Baudrimont M, Mesmer-Dudons N, Gonzalez P, Mornet S, Brisson A (2008) Impacts of gold nanoparticle exposure on two freshwater species: a phytoplanktonic alga (Scenedesmus subspicatus) and a benthic bivalve (Corbicula fluminea). Gold Bull 41(2):116–126CrossRefGoogle Scholar
  54. Riddhi P, Om B, Kuldeep R, Bindiya P. (2014) An incongruent upshot of gold nano particles in middle of cancer treatment with poles apart appliances. Int J Drug Dev ResGoogle Scholar
  55. Romer I, White TA, Baalousha M, Chipman K, Viant MR, Lead JR (2011) Aggregation and dispersion of silver nanoparticles in exposure media for aquatic toxicity tests. J Chromatogr A 1218(27):4226–4233CrossRefGoogle Scholar
  56. Roney N. (2005). Toxicological profile for zinc. Agency for Toxic Substances and Disease RegistryGoogle Scholar
  57. Rout GR, Das P (2009) Effect of metal toxicity on plant growth and metabolism: I. Zinc. In Sustainable Agriculture. Springer Netherlands. pp. 873–884Google Scholar
  58. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779CrossRefGoogle Scholar
  59. Sathishkumar M, Pavagadhi S, Mahadevan A, Balasubramanian R (2014) Biosynthesis of gold nanoparticles and related cytotoxicity evaluation using A549 cells. Ecotoxicol Environ Saf 114:232–240CrossRefGoogle Scholar
  60. Shellaiah M, Simon T, Sun KW, Ko FH (2016) Simple bare gold nanoparticles for rapid colorimetric detection of Cr3+ ions in aqueous medium with real sample applications. Sens Actuators B Chem 226:44–51CrossRefGoogle Scholar
  61. Sposito G, Lund LJ, Chang AC (1982) Trace metal chemistry in arid-zone field soils amended with sewage sludge: I. Fractionation of Ni, Cu, Zn, Cd, and Pb in solid phases1. Soil Sci Soc Am J 46(2):260–264CrossRefGoogle Scholar
  62. Stankus DP, Lohse SE, Hutchison JE, Nason JA (2011) Interactions between natural organic matter and gold nanoparticles stabilized with different organic capping agents. Environ Sci Technol 45(8):3238–3244Google Scholar
  63. Stuchinskaya T, Moreno M, Cook MJ, Edwards DR, Russell DA (2011) Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochemical & Photobiological Sciences 10(5):822–831CrossRefGoogle Scholar
  64. Sugunan A, Thanachayanont C, Dutta J, Hilborn JG (2005) Heavy-metal ion sensors using chitosan-capped gold nanoparticles. Sci Technol Adv Mater 6(3):335–340CrossRefGoogle Scholar
  65. Teisseire H, Couderchet M, Vernet G (1999) Phytotoxicity of diuron alone and in combination with copper or folpet on duckweed (Lemna minor). Environ Pollut 106(1):39–45CrossRefGoogle Scholar
  66. Tejamaya M, Römer I, Merrifield RC, Lead JR (2012) Stability of citrate, PVP, and PEG coated silver nanoparticles in ecotoxicology media. Environ Sci Technol 46(13):7011–7017CrossRefGoogle Scholar
  67. Tolaymat TM, El Badawy AM, Genaidy A, Scheckel KG, Luxton TP, Suidan M (2010) An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer reviewed scientific papers. Sci Total Environ 408(5):999–1006CrossRefGoogle Scholar
  68. Tsuji N, Hirayanagi N, Okada M, Miyasaka H, Hirata K, Zenk MH, Miyamoto K (2002) Enhancement of tolerance to heavy metals and oxidative stress in Dunaliella tertiolecta by Zn-induced phytochelatin synthesis. Biochem Biophys Res Commun 293(1):653–659CrossRefGoogle Scholar
  69. Van Hoecke K, De Schamphelaere KAC, Ali Z, Zhang F, Elsaesser A, Rivera-Gil P, Parak WJ, Smagghe G, Howard CV, Janssen CR (2013) Ecotoxicity and uptake of plymer coated gold nanoparticles. Nanotoxicology 1:37–47Google Scholar
  70. Von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps. Nanotoxicology 8(6):605–630CrossRefGoogle Scholar
  71. Wang D, Hu J, Irons DR, Wang J (2011) Synergistic toxic effect of nano-TiO2 and As (V) on Ceriodaphnia dubia. Sci Total Environ 409(7):1351–1356CrossRefGoogle Scholar
  72. Wang X, Ji Z, Chang CH, Zhang H, Wang M, Liao YP, Lin S, Meng H, Li R, Sun B (2014) Use of coated silver nanoparticles to understand the relationship of particle dissolution and bioavailability to cell and lung toxicological potential. Small 10(2):385–398CrossRefGoogle Scholar
  73. Wong PTS, Chau YK (1990) Zinc toxicity to freshwater algae. Toxic Assess 5(2):167–177CrossRefGoogle Scholar
  74. WHO (2003) Zinc in drinking-water. Background document for preparation of WHO Guidelines for drinking-water quality. World Health Organization 2003. Geneva. (WHO/SDE/WSH/03.04/17). Available from: Scholar
  75. Yah CS (2013) The toxicity of gold nanoparticles in relation to their physiochemical properties. Biomed Res 24(3):400–413Google Scholar
  76. Yang WW, Miao A-J, Yang L-Y (2012) Cd2+ toxicity to a green alga Chlamydomonas reinhardtii as influenced by its adsorption on TiO2 engineered nanoparticles. PLoS One 7(3):e32300CrossRefGoogle Scholar
  77. Zhang H, Zhang C (2014) Transport of silver nanoparticles capped with different stabilizers in water saturated porous media. Journal of Materials and Environmental Science 5(1):231–236Google Scholar
  78. Zhang X-D, Wu D, Shen X, Liu P-X, Yang N, Zhao B, Zhang H, Sun Y-M, Zhang L-A, Fan F-Y (2011) Size-dependent in vivo toxicity of PEG-coated gold nanoparticles. Int J Nanomedicine 6:2071–2081CrossRefGoogle Scholar
  79. Zeng S, Cai M, Liang H, Hao J (2012) Size-dependent colorimetric visual detection of melamine in milk at 10 ppb level by citrate-stabilized Au nanoparticles. Anal Methods 4:2499–2505CrossRefGoogle Scholar
  80. Zou X-Y, Xu B, Yu C-P, Zhang H-W (2013) Combined toxicity of ferroferric oxide nanoparticles and arsenic to the ciliated protozoa Tetrahymena pyriformis. Aquat Toxicol 134:66–73CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Centre for NanobiotechnologyVIT UniversityVelloreIndia

Personalised recommendations