Abstract
Copper mining has polluted soils and water, causing a reduction of the microbial diversity and a change in the structure of the resident bacterial communities. In this work, selective isolation combined with MALDI-TOF MS and the 16S rDNA method were used for characterizing cultivable bacterial communities from copper mining samples. The results revealed that MALDI-TOF MS analysis can be considered a reliable and fast tool for identifying copper-resistant bacteria from environmental samples at the genera level. Even though some results were ambiguous, accuracy can be improved by enhancing reference databases. Therefore, mass spectra analysis provides a reliable method to facilitate monitoring of the microbiota from copper-polluted sites. The understanding of the microbial community diversity in copper-contaminated sites can be helpful to understand the impact of the metal on the microbiome and to design bioremediation processes.




Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Ahmad I, Ansari MI, Aqil F (2006) Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Indian J Exp Biol 44:73–76
Allen AD, Velez-Quinones M, Eribo BE, Morris V (2015) MALDI-TOF MS as a supportive tool for the evaluation of bacterial diversity in soils from Africa and the Americas. Aerobiologia (Bologna) 31:111–126. doi:10.1007/s10453-014-9351-5
Altimira F, Yáñez C, Bravo G et al (2012) Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol 12:193. doi:10.1186/1471-2180-12-193
Anderson AC, Sanunu M, Schneider C et al (2014) Rapid species-level identification of vaginal and oral lactobacilli using MALDI-TOF MS analysis and 16S rDNA sequencing. BMC Microbiol 14:312. doi:10.1186/s12866-014-0312-5
Anyanwu CU, Moneke SC (2011) Soil bacterial response to introduced metal stress. Int J Basic Appl Sci IJBAS-IJENS 11:116501–114343
Avanzi I, Hase Gracioso L, Passos Baltazar M et al (2014) Comparative study of microbial community from mining wastes—focus on future recovery of copper. BMC Proc 8:P182. doi:10.1186/1753-6561-8-S4-P182
Baby J, Raj J, Biby E et al (2011) Toxic effect of heavy metals on aquatic environment. Int J Biol Chem Sci. doi:10.4314/ijbcs.v4i4.62976
Carbonnelle E, Mesquita C, Bille E et al (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44:104–109. doi:10.1016/j.clinbiochem.2010.06.017
Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19:544–549. doi:10.1016/j.copbio.2008.10.010
Chen X, Shi J, Chen Y et al (2006) Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can J Microbiol 52:308–316. doi:10.1139/w05-157
Christner M, Trusch M, Rohde H et al (2014) Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic Escherichia coli. PLoS One 9:e101924. doi:10.1371/journal.pone.0101924
Clark AE, Kaleta EJ, Arora A, Wolk DM (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 26:547–603. doi:10.1128/CMR.00072-12
Diels L, Van Roy S, Taghavi S, Van Houdt R (2009) From industrial sites to environmental applications with Cupriavidus metallidurans. Antonie Van Leeuwenhoek 96:247–258. doi:10.1007/s10482-009-9361-4
Gabbianelli R, Lupidi G, Villarini M, Falcioni G (2003) DNA damage induced by copper on erythrocytes of gilthead sea bream Sparus aurata and mollusk Scapharca inaequivalvis. Arch Environ Contam Toxicol 45:350–356. doi:10.1007/s00244-003-2171-1
Gandhi VP, Priya A, Priya S et al (2015) Isolation and molecular characterization of bacteria to heavy metals isolated from soil samples in Bokaro Coal Mines, India. Pollution 1:287–295
Giebel R, Worden C, Rust SM et al (2010) Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv Appl Microbiol 71:149–184. doi:10.1016/S0065-2164(10)71006-6
Gracioso L, Avanzi I, Galluzzi Baltazar M et al (2014) Proteomic profiles comparison of three isolated bacteria strains from a copper processing area. BMC Proc 8:P197. doi:10.1186/1753-6561-8-S4-P197
Guo JK, Ding YZ, Feng RW et al (2015) Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China. Antonie Van Leeuwenhoek 107:1591–1598. doi:10.1007/s10482-015-0453-z
Holmes DE, Nevin KP, Lovley Correspondence DR, Lovley DR (2004) Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599. doi:10.1099/ijs.0.02958-0
Kopcakova A, Stramova Z, Kvasnova S et al (2014) Need for database extension for reliable identification of bacteria from extreme environments using MALDI TOF mass spectrometry. Chem Pap 68:1435–1442. doi:10.2478/s11696-014-0612-0
Kozdrój J, van Elsas JD (2001) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods 43:197–212
Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol msw054. doi:10.1093/molbev/msw054
Ladomersky E, Petris MJ (2015) Copper tolerance and virulence in bacteria. Metallomics 7:957–964. doi:10.1039/c4mt00327f
Liu H, Du Z, Wang J, Yang R (2007) Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 73:1899–1907. doi:10.1128/AEM.02391-06
Lu W-B, Shi J-J, Wang C-H, Chang J-S (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86. doi:10.1016/j.jhazmat.2005.10.036
Lu W-B, Kao W-C, Shi J-J, Chang J-S (2008) Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies. J Hazard Mater 153:372–381. doi:10.1016/j.jhazmat.2007.08.059
Mathew A, Jenul C, Carlier AL, Eberl L (2016) The role of siderophores in metal homeostasis of members of the genus Burkholderia. Environ Microbiol Rep 8:103–109. doi:10.1111/1758-2229.12357
Nagy E, Maier T, Urban E et al (2009) Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect 15:796–802. doi:10.1111/j.1469-0691.2009.02788.x
Pereira LB, Vicentini R, Ottoboni LMM (2015) Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine. Genet Mol Biol 38:484–489. doi:10.1590/S1415-475738420150025
Raja CE, Anbazhagan K, Selvam GS (2006) Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World J Microbiol Biotechnol 22:577–585. doi:10.1007/s11274-005-9074-4
Rodrigues da Silva Enríquez MA (2009) Mineração e desenvolvimento sustentável - é possível conciliar? Revibec Rev la Red Iberoam Econ Ecológica 12:051–066
Ruelle V, El Moualij B, Zorzi W et al (2004) Rapid identification of environmental bacterial strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:2013–2019. doi:10.1002/rcm.1584
Salvadori MR, Ando RA, Oller do Nascimento CA, Corrêa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9:e87968. doi:10.1371/journal.pone.0087968
Sambrook J, Russell DW (2001) Molecular cloning—Sambrook & Russel. Cold Spring Harb Lab Press 1, 2, 3. doi:10.1002/humu.1186.abs
Santos IC, Hildenbrand ZL, Schug KA et al (2016) Applications of MALDI-TOF MS in environmental microbiology. Analyst 141:2827–2837. doi:10.1039/C6AN00131A
Sauer S, Freiwald A, Maier T et al (2008) Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One. doi:10.1371/journal.pone.0002843
Seng P, Drancourt M, Gouriet F et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551. doi:10.1086/600885
Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791. doi:10.3389/fmicb.2015.00791
Soergel DAW, Dey N, Knight R, Brenner SE (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 6:1440–1444. doi:10.1038/ismej.2011.208
Staehlin BM, Gibbons JG, Rokas A et al (2016) Evolution of a heavy metal homeostasis/resistance island reflects increasing copper stress in Enterobacteria. Genome Biol Evol 8:811–826. doi:10.1093/gbe/evw031
Theel ES, Schmitt BH, Hall L et al (2012) Formic acid-based direct, on-plate testing of yeast and Corynebacterium species by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:3093–3095. doi:10.1128/JCM.01045-12
Turpeinen R, Kairesalo T, Häggblom MM (2004) Microbial community structure and activity in arsenic-chromium- and copper-contaminated soils
Uhlik O, Strejcek M, Junkova P et al (2011) Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl Environ Microbiol 77:6858–6866. doi:10.1128/AEM.05465-11
Zhang XX, Rainey PB (2008) Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol 10:3284–3294. doi:10.1111/j.1462-2920.2008.01720.x
Acknowledgements
We gratefully acknowledge Vale, BNDES, and FAPESP (São Paulo Research Foundation) for the financial and technical support. Avanzi I.R. and Gracioso L.H thank FAPESP for the PhD fellowships granted under processes 2012/06600-7 and 2013/11020-2.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor Robert Duran
Electronic supplementary material
ESM 1
(PDF 48 kb)
Rights and permissions
About this article
Cite this article
Avanzi, I.R., Gracioso, L.H., Baltazar, M.d.P.G. et al. Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environ Sci Pollut Res 24, 3717–3726 (2017). https://doi.org/10.1007/s11356-016-8125-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-016-8125-8


