Skip to main content

Advertisement

Log in

Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Copper mining has polluted soils and water, causing a reduction of the microbial diversity and a change in the structure of the resident bacterial communities. In this work, selective isolation combined with MALDI-TOF MS and the 16S rDNA method were used for characterizing cultivable bacterial communities from copper mining samples. The results revealed that MALDI-TOF MS analysis can be considered a reliable and fast tool for identifying copper-resistant bacteria from environmental samples at the genera level. Even though some results were ambiguous, accuracy can be improved by enhancing reference databases. Therefore, mass spectra analysis provides a reliable method to facilitate monitoring of the microbiota from copper-polluted sites. The understanding of the microbial community diversity in copper-contaminated sites can be helpful to understand the impact of the metal on the microbiome and to design bioremediation processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ahmad I, Ansari MI, Aqil F (2006) Biosorption of Ni, Cr and Cd by metal tolerant Aspergillus niger and Penicillium sp. using single and multi-metal solution. Indian J Exp Biol 44:73–76

    CAS  Google Scholar 

  • Allen AD, Velez-Quinones M, Eribo BE, Morris V (2015) MALDI-TOF MS as a supportive tool for the evaluation of bacterial diversity in soils from Africa and the Americas. Aerobiologia (Bologna) 31:111–126. doi:10.1007/s10453-014-9351-5

    Article  Google Scholar 

  • Altimira F, Yáñez C, Bravo G et al (2012) Characterization of copper-resistant bacteria and bacterial communities from copper-polluted agricultural soils of central Chile. BMC Microbiol 12:193. doi:10.1186/1471-2180-12-193

    Article  CAS  Google Scholar 

  • Anderson AC, Sanunu M, Schneider C et al (2014) Rapid species-level identification of vaginal and oral lactobacilli using MALDI-TOF MS analysis and 16S rDNA sequencing. BMC Microbiol 14:312. doi:10.1186/s12866-014-0312-5

    Article  Google Scholar 

  • Anyanwu CU, Moneke SC (2011) Soil bacterial response to introduced metal stress. Int J Basic Appl Sci IJBAS-IJENS 11:116501–114343

    Google Scholar 

  • Avanzi I, Hase Gracioso L, Passos Baltazar M et al (2014) Comparative study of microbial community from mining wastes—focus on future recovery of copper. BMC Proc 8:P182. doi:10.1186/1753-6561-8-S4-P182

    Article  Google Scholar 

  • Baby J, Raj J, Biby E et al (2011) Toxic effect of heavy metals on aquatic environment. Int J Biol Chem Sci. doi:10.4314/ijbcs.v4i4.62976

    Google Scholar 

  • Carbonnelle E, Mesquita C, Bille E et al (2011) MALDI-TOF mass spectrometry tools for bacterial identification in clinical microbiology laboratory. Clin Biochem 44:104–109. doi:10.1016/j.clinbiochem.2010.06.017

    Article  CAS  Google Scholar 

  • Cardenas E, Tiedje JM (2008) New tools for discovering and characterizing microbial diversity. Curr Opin Biotechnol 19:544–549. doi:10.1016/j.copbio.2008.10.010

    Article  CAS  Google Scholar 

  • Chen X, Shi J, Chen Y et al (2006) Tolerance and biosorption of copper and zinc by Pseudomonas putida CZ1 isolated from metal-polluted soil. Can J Microbiol 52:308–316. doi:10.1139/w05-157

    Article  CAS  Google Scholar 

  • Christner M, Trusch M, Rohde H et al (2014) Rapid MALDI-TOF mass spectrometry strain typing during a large outbreak of Shiga-toxigenic Escherichia coli. PLoS One 9:e101924. doi:10.1371/journal.pone.0101924

    Article  Google Scholar 

  • Clark AE, Kaleta EJ, Arora A, Wolk DM (2013) Matrix-assisted laser desorption ionization-time of flight mass spectrometry: a fundamental shift in the routine practice of clinical microbiology. Clin Microbiol Rev 26:547–603. doi:10.1128/CMR.00072-12

    Article  CAS  Google Scholar 

  • Diels L, Van Roy S, Taghavi S, Van Houdt R (2009) From industrial sites to environmental applications with Cupriavidus metallidurans. Antonie Van Leeuwenhoek 96:247–258. doi:10.1007/s10482-009-9361-4

    Article  Google Scholar 

  • Gabbianelli R, Lupidi G, Villarini M, Falcioni G (2003) DNA damage induced by copper on erythrocytes of gilthead sea bream Sparus aurata and mollusk Scapharca inaequivalvis. Arch Environ Contam Toxicol 45:350–356. doi:10.1007/s00244-003-2171-1

    Article  CAS  Google Scholar 

  • Gandhi VP, Priya A, Priya S et al (2015) Isolation and molecular characterization of bacteria to heavy metals isolated from soil samples in Bokaro Coal Mines, India. Pollution 1:287–295

    Google Scholar 

  • Giebel R, Worden C, Rust SM et al (2010) Microbial fingerprinting using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) applications and challenges. Adv Appl Microbiol 71:149–184. doi:10.1016/S0065-2164(10)71006-6

    Article  CAS  Google Scholar 

  • Gracioso L, Avanzi I, Galluzzi Baltazar M et al (2014) Proteomic profiles comparison of three isolated bacteria strains from a copper processing area. BMC Proc 8:P197. doi:10.1186/1753-6561-8-S4-P197

    Article  Google Scholar 

  • Guo JK, Ding YZ, Feng RW et al (2015) Burkholderia metalliresistens sp. nov., a multiple metal-resistant and phosphate-solubilising species isolated from heavy metal-polluted soil in Southeast China. Antonie Van Leeuwenhoek 107:1591–1598. doi:10.1007/s10482-015-0453-z

    Article  CAS  Google Scholar 

  • Holmes DE, Nevin KP, Lovley Correspondence DR, Lovley DR (2004) Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae fam. nov. Int J Syst Evol Microbiol 54:1591–1599. doi:10.1099/ijs.0.02958-0

    Article  CAS  Google Scholar 

  • Kopcakova A, Stramova Z, Kvasnova S et al (2014) Need for database extension for reliable identification of bacteria from extreme environments using MALDI TOF mass spectrometry. Chem Pap 68:1435–1442. doi:10.2478/s11696-014-0612-0

    Article  CAS  Google Scholar 

  • Kozdrój J, van Elsas JD (2001) Structural diversity of microorganisms in chemically perturbed soil assessed by molecular and cytochemical approaches. J Microbiol Methods 43:197–212

    Article  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol msw054. doi:10.1093/molbev/msw054

    Google Scholar 

  • Ladomersky E, Petris MJ (2015) Copper tolerance and virulence in bacteria. Metallomics 7:957–964. doi:10.1039/c4mt00327f

    Article  CAS  Google Scholar 

  • Liu H, Du Z, Wang J, Yang R (2007) Universal sample preparation method for characterization of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. Appl Environ Microbiol 73:1899–1907. doi:10.1128/AEM.02391-06

    Article  CAS  Google Scholar 

  • Lu W-B, Shi J-J, Wang C-H, Chang J-S (2006) Biosorption of lead, copper and cadmium by an indigenous isolate Enterobacter sp. J1 possessing high heavy-metal resistance. J Hazard Mater 134:80–86. doi:10.1016/j.jhazmat.2005.10.036

    Article  CAS  Google Scholar 

  • Lu W-B, Kao W-C, Shi J-J, Chang J-S (2008) Exploring multi-metal biosorption by indigenous metal-hyperresistant Enterobacter sp. J1 using experimental design methodologies. J Hazard Mater 153:372–381. doi:10.1016/j.jhazmat.2007.08.059

    Article  CAS  Google Scholar 

  • Mathew A, Jenul C, Carlier AL, Eberl L (2016) The role of siderophores in metal homeostasis of members of the genus Burkholderia. Environ Microbiol Rep 8:103–109. doi:10.1111/1758-2229.12357

    Article  CAS  Google Scholar 

  • Nagy E, Maier T, Urban E et al (2009) Species identification of clinical isolates of Bacteroides by matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry. Clin Microbiol Infect 15:796–802. doi:10.1111/j.1469-0691.2009.02788.x

    Article  CAS  Google Scholar 

  • Pereira LB, Vicentini R, Ottoboni LMM (2015) Characterization of the core microbiota of the drainage and surrounding soil of a Brazilian copper mine. Genet Mol Biol 38:484–489. doi:10.1590/S1415-475738420150025

    Article  Google Scholar 

  • Raja CE, Anbazhagan K, Selvam GS (2006) Isolation and characterization of a metal-resistant Pseudomonas aeruginosa strain. World J Microbiol Biotechnol 22:577–585. doi:10.1007/s11274-005-9074-4

    Article  CAS  Google Scholar 

  • Rodrigues da Silva Enríquez MA (2009) Mineração e desenvolvimento sustentável - é possível conciliar? Revibec Rev la Red Iberoam Econ Ecológica 12:051–066

    Google Scholar 

  • Ruelle V, El Moualij B, Zorzi W et al (2004) Rapid identification of environmental bacterial strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 18:2013–2019. doi:10.1002/rcm.1584

    Article  CAS  Google Scholar 

  • Salvadori MR, Ando RA, Oller do Nascimento CA, Corrêa B (2014) Intracellular biosynthesis and removal of copper nanoparticles by dead biomass of yeast isolated from the wastewater of a mine in the Brazilian Amazonia. PLoS One 9:e87968. doi:10.1371/journal.pone.0087968

    Article  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning—Sambrook & Russel. Cold Spring Harb Lab Press 1, 2, 3. doi:10.1002/humu.1186.abs

  • Santos IC, Hildenbrand ZL, Schug KA et al (2016) Applications of MALDI-TOF MS in environmental microbiology. Analyst 141:2827–2837. doi:10.1039/C6AN00131A

    Article  CAS  Google Scholar 

  • Sauer S, Freiwald A, Maier T et al (2008) Classification and identification of bacteria by mass spectrometry and computational analysis. PLoS One. doi:10.1371/journal.pone.0002843

    Google Scholar 

  • Seng P, Drancourt M, Gouriet F et al (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551. doi:10.1086/600885

    Article  CAS  Google Scholar 

  • Singhal N, Kumar M, Kanaujia PK, Virdi JS (2015) MALDI-TOF mass spectrometry: an emerging technology for microbial identification and diagnosis. Front Microbiol 6:791. doi:10.3389/fmicb.2015.00791

    Article  Google Scholar 

  • Soergel DAW, Dey N, Knight R, Brenner SE (2012) Selection of primers for optimal taxonomic classification of environmental 16S rRNA gene sequences. ISME J 6:1440–1444. doi:10.1038/ismej.2011.208

    Article  CAS  Google Scholar 

  • Staehlin BM, Gibbons JG, Rokas A et al (2016) Evolution of a heavy metal homeostasis/resistance island reflects increasing copper stress in Enterobacteria. Genome Biol Evol 8:811–826. doi:10.1093/gbe/evw031

    Google Scholar 

  • Theel ES, Schmitt BH, Hall L et al (2012) Formic acid-based direct, on-plate testing of yeast and Corynebacterium species by Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:3093–3095. doi:10.1128/JCM.01045-12

    Article  CAS  Google Scholar 

  • Turpeinen R, Kairesalo T, Häggblom MM (2004) Microbial community structure and activity in arsenic-chromium- and copper-contaminated soils

  • Uhlik O, Strejcek M, Junkova P et al (2011) Matrix-assisted laser desorption ionization (MALDI)-time of flight mass spectrometry- and MALDI biotyper-based identification of cultured biphenyl-metabolizing bacteria from contaminated horseradish rhizosphere soil. Appl Environ Microbiol 77:6858–6866. doi:10.1128/AEM.05465-11

    Article  CAS  Google Scholar 

  • Zhang XX, Rainey PB (2008) Regulation of copper homeostasis in Pseudomonas fluorescens SBW25. Environ Microbiol 10:3284–3294. doi:10.1111/j.1462-2920.2008.01720.x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge Vale, BNDES, and FAPESP (São Paulo Research Foundation) for the financial and technical support. Avanzi I.R. and Gracioso L.H thank FAPESP for the PhD fellowships granted under processes 2012/06600-7 and 2013/11020-2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ingrid Regina Avanzi.

Additional information

Responsible editor Robert Duran

Electronic supplementary material

ESM 1

(PDF 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avanzi, I.R., Gracioso, L.H., Baltazar, M.d.P.G. et al. Rapid bacteria identification from environmental mining samples using MALDI-TOF MS analysis. Environ Sci Pollut Res 24, 3717–3726 (2017). https://doi.org/10.1007/s11356-016-8125-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-8125-8

Keywords

Profiles

  1. Louise Hase Gracioso