Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 2, pp 1871–1879 | Cite as

Comparing TiO2 photocatalysis and UV-C radiation for inactivation and mutant formation of Salmonella typhimurium TA102

  • Antonino Fiorentino
  • Luigi RizzoEmail author
  • Hélène Guilloteau
  • Xavier Bellanger
  • Christophe Merlin
Research Article

Abstract

Salmonellosis is one of the most common causes of foodborne bacterial human disease worldwide, and the emergence of multidrug-resistant (MDR) strains of Salmonella enterica serovar Typhimurium (S. typhimurium) was associated to the incidence of invasive salmonellosis. The objective of the present work was to investigate the effects of the TiO2 photocatalysis process in terms of both bacteria inactivation and the emergence of mutants, on S. typhimurium TA102 water suspensions. The TiO2 photocatalysis was compared with a conventional disinfection process such as UV-C radiation. In spite of the faster bacterial inactivation obtained in UV-C disinfection experiments (45, 15, and 10 min for total inactivation for initial cell density 109, 108, and 107 CFU mL−1, respectively), photocatalytic disinfection (60, 30, and 15 min) was more energy efficient because of a lower energy requirement (2–20 mWs cm−2) compared to the UV-C disinfection process (5–30 mWs cm−2). During the photocatalytic experiments, the mutation frequency increased up to 1648-fold compared to background level for a 108 CFU mL−1 initial bacterial density, and mutants were inactivated after 1–10-min treatment, depending on initial bacterial cell density. In UV-C disinfection experiments, the mutation frequency increased up to 2181-fold for a 108 CFU mL−1 initial bacterial cell density, and UV-C doses in the range of 0.5–4.8 mWs cm−2 were necessary to decrease mutation frequency. In conclusion, both disinfection processes were effective in the inactivation of S. typhimurium cells, and mutants released into the environment can be avoided if cells are effectively inactivated.

Keywords

Advanced oxidation processes Ames test Mutagenicity Salmonella typhimurium Water disinfection 

Notes

Acknowledgments

The support of University of Salerno through FARB2012 (Trattamento avanzato di acque reflue urbane mediante fotocatalisi: effetto sui batteri resistenti agli antibiotici) project funding is acknowledged. The authors would like also to acknowledge the financial support provided by COST-European Cooperation in Science and Technology, to the COST Action “TD0803: Detecting evolutionary hotspots of antibiotic resistances in Europe (DARE)” and COST Action “ES1403: New and emerging challenges and opportunities in wastewater reuse (NEREUS).” CM wishes to thank the “Zone Atelier Moselle” (ZAM) for supporting his research on treatment processes and their effects.

Disclaimer

The content of this article is the authors’ responsibility and neither COST nor any person acting on its behalf is responsible for the use, which might be made of the information contained in it.

Supplementary material

11356_2016_7981_MOESM1_ESM.docx (552 kb)
ESM 1 (DOCX 552 kb)

References

  1. Berney HU, Weilenmann A, Simonetti T (2006) Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella typhimurium and Vibrio cholerae. J Appl Microbiol 101(4):828–836CrossRefGoogle Scholar
  2. Cho M, Chung H, Choi W, Yoon J (2004) Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Res 38:1069–1077CrossRefGoogle Scholar
  3. Dalrymple OK, Stefanakos E, Trotz MA, Goswami DY (2010) A review of the mechanisms and modeling of photocatalytic disinfection. Appl Catalysis B: Environ 98:27–38CrossRefGoogle Scholar
  4. de Kok TM, van Maanen JM, Lankelma J, ten Hoor F, Kleinjans JC (1992) Electron spin resonance spectroscopy of oxygen radicals generated by synthetic fecapentaene-12 and reduction of fecapentaene mutagenicity to Salmonella typhimurium by hydroxyl radical scavenging. Carcinogenesis 13:1249–1255CrossRefGoogle Scholar
  5. Dunlop PSM, Ciavola M, Rizzo L, Byrne JA (2011) Inactivation and injury assessment of Escherichia coli during solar and photocatalytic disinfection in LDPE bags. Chemosphere 85:1160–1166CrossRefGoogle Scholar
  6. Fàbrega A, Vila J (2013) Salmonella enterica serovar typhimurium skills to succeed in the host: virulence and regulation. Clin Microbiol Rev 26(2):308–341CrossRefGoogle Scholar
  7. Foster HA, Ditta IB, Varghese S, Steele A (2011) Photocatalytic disinfection using titanium dioxide: spectrum and mechanism of antimicrobial activity. Appl Microbiol Biotechnol 90(6):1847–1868CrossRefGoogle Scholar
  8. Gordon MA, Graham SM, Walsh AL, Wilson LK, Phiri A, Molyneux EM et al (2008) Epidemics of invasive Salmonella enterica serovar enteritidis and Salmonella enterica serovar typhimurium infection associated with multidrug resistance among adults and children in Malawi. Clin Infect Dis 46:963–969CrossRefGoogle Scholar
  9. Grey CE, Adlercreutz P (2003) Ability of antioxidants to prevent oxidative mutations in Salmonella typhimurium TA102. Mutat Res 527:27–36CrossRefGoogle Scholar
  10. Grossweiner LI, Jones LR, Grossweiner JB, Rogers BHG (2005) Photochemical damage to biological systems. In The Science of Phototherapy: an Introduction (Ed Jones), Springer the Netherlands.Google Scholar
  11. Haley BJ, Cole D (2009) Distribution, diversity, and seasonality of waterborne salmonellae in a rural watershed. Appl Environ Microb 75(5):1248–1255CrossRefGoogle Scholar
  12. Hignen WAM, Medema GJ (2006) Inactivation credit of UV radiation for viruses, bacteria and protozoan (oo)cysts in water: a review. Water Res 40(1):3–22CrossRefGoogle Scholar
  13. Kanno T, Nakamura K, Ikai H, Kikuchi K, Sasaki K, Niwano Y (2012) Literature review of the role of hydroxyl radicals in chemicallyinduced mutagenicity and carcinogenicity for the risk assessment of a disinfection system utilizing photolysis of hydrogen peroxide. J Clin Biochem Nutr 51:9–14CrossRefGoogle Scholar
  14. Koivunen J, Heinonen-Tanski H (2005) Inactivation of enteric microorganisms with chemical disinfectants, UV radiation and combined chemical/UV treatments. Water Res 39(8):1519–1526CrossRefGoogle Scholar
  15. Levantesi C, La Mantia R, Masciopinto C, Uta Böckelmann C et al (2010) Quantification of pathogenic microorganisms and microbial indicators in three wastewater reclamation and managed aquifer recharge facilities in Europe. Sci Total Environ 408(21):4923–4230CrossRefGoogle Scholar
  16. Levantesi C, Bonadonna L, Briancesco R, Grohmann E, Toze S, Tandoi V (2012) Salmonella in surface and drinking water: occurrence and water-mediated transmission. Food Res Int 45(2):587–602CrossRefGoogle Scholar
  17. Li H, Bhaskara A, Megalis C, Tortorello ML (2012) Transcriptomic analysis of Salmonella desiccation resistance. Foodborne Pathog Dis 9:1143–1151CrossRefGoogle Scholar
  18. Long M, Wang J, Zhuang H, Zhang Y, Wu H, Zhang J (2014) Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms—Salmonella typhimurium and Listeria monocytogenes. Food Control 39(1):68–74CrossRefGoogle Scholar
  19. Lu Z-X, Zhou L, Zhang Z-L, Shi W-L, Xie Z-X, Xie H-Y, Pang D-W, Shen P (2003) Cell damage induced by photocatalysis of TiO2 thin films. Langmuir 19:8765–8768CrossRefGoogle Scholar
  20. Magdeburg A, Stalter D, Schlsener M, Ternes T, Oehlmann J (2014) Evaluating the efficiency of advanced wastewater treatment: target analysis of organic contaminants and (geno-)toxicity assessment tell a different story. Water Res 50(0):35–47CrossRefGoogle Scholar
  21. Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM (2010) The global burden of nontyphoidal Salmonella gastroenteritis. Clin Infect Dis 50:882–889CrossRefGoogle Scholar
  22. Maron DM, Ames BN (1983) Revised methods for Salmonella mutagenicity test. Mutat Res 101:173–215CrossRefGoogle Scholar
  23. Martinez-Urtaza J, Saco M, de Novoa J, Perez-Pineiro P, Peiteado J, Lozano-Leon A, Garcia-Martin O (2004) Influence of environmental factors and human activity on the presence of Salmonella serovars in a marine environment. Appl Environ Microbiol 70:2089–2097CrossRefGoogle Scholar
  24. Masarikova M, Manga I, Cizek A, Dolejska M, Oravcova V, Myskova P, Karpiskova R, Literak I (2016) Salmonella enterica resistant to antimicrobials in wastewater effluents and black-headed gulls in the Czech Republic, 2012. Sci Total Environ 542:102–107CrossRefGoogle Scholar
  25. McGuigan KG, Conroy RM, Mosler H-J, du Preez M, Ubomba-Jaswa E, Fernandez-Ibanez P (2012) Solar water disinfection (SODIS): a review from bench-top to roof-top. J Hazard Mater 235(236):29–46CrossRefGoogle Scholar
  26. Michael GB, Butaye P, Cloeckaert A, Schwarz S (2006) Genes and mutations conferring antimicrobial resistance in Salmonella: an update. Microbes Infect 8(7):1898–1914CrossRefGoogle Scholar
  27. Mišík M, Knasmueller S, Ferk F, Cichna-Markl M, Grummt T, Schaar H, Kreuzinger N (2011) Impact of ozonation on the genotoxic activity of tertiary treated municipalwastewatr. Water Res 45(12):3681–3691CrossRefGoogle Scholar
  28. Monarca S, Feretti D, Collivignarelli C, Guzzella G, Zerbini I, Bertanza G, Pedrazzani R (2000) The influence of different disinfectants on mutagenicity and toxicity of urban wastewater. Water Res 34(17):4261–4269CrossRefGoogle Scholar
  29. Nutt JD, Li X, Woodward CL, Zabala-Diaz IB, Ricke SC (2003) Growth kinetics response of a Salmonella typhimurium poultry marker strain to fresh produce extracts. Bioresource Technol 89:313–316CrossRefGoogle Scholar
  30. Oubrim N, Ennaji MM, Badri S, Cohen N (2012) Removal of antibiotic-resistant Salmonella in sewage water from wastewater treatment plants in Settat and Soualem, Morocco. Eur J Sci Res 68(4):565–573Google Scholar
  31. Polo F, Figueras MJ, Inza I, Sala J, Fleisher JM, Guarro J (1999) Prevalence of Salmonella serotypes in environmental waters and their relationships with indicator organisms. A Van Leeuw 75:285–292CrossRefGoogle Scholar
  32. Polo-López MI, Castro-Alférez M, Oller I, Fernández-Ibáñez P (2014) Assessment of solar photo-Fenton, photocatalysis, and H2O2 for removal of phytopathogen fungi spores in synthetic and real effluents of urban wastewater. Chemi Eng J 257:122–130CrossRefGoogle Scholar
  33. Popoff MY (2001) Antigenic formulas of the salmonella serovars. In: WHO collaborating Center for Reference and Research on salmonella, 8th edn. Institut Pasteur Paris, FranceGoogle Scholar
  34. Rahman BA, Wasfy MO, Maksoud MA, Hanna N, Dueger E, House B (2014) Multi-drug resistance and reduced susceptibility to ciprofloxacin among Salmonella enterica serovar typhi isolates from the Middle East and Central Asia. New Microbes and New Infect 2(4):88–92CrossRefGoogle Scholar
  35. Rahmani M, Peighambari SM, Svendsen CA, Cavaco LM, Agersø Y, Hendriksen RS (2013) Molecular clonality and antimicrobial resistance in Salmonella enterica serovars enteritidis and Infantis from broilers in three northern regions of Iran. BMC Vet Res 9:66CrossRefGoogle Scholar
  36. Rincon AG, Pulgarin C (2007) Fe3+ and TiO2 solar-light-assisted inactivation of E. coli at field scale—implications in solar disinfection at low temperature of large quantities of water. Catal Today 122:128–136CrossRefGoogle Scholar
  37. Rizzo L (2011) Bioassays as a tool for evaluating advanced oxidation processes in water and wastewater treatment. Water Res 45:4311–4330CrossRefGoogle Scholar
  38. Rizzo L, Manaia C, Merlin C, Schwartz T, Dagot C, Ploy MC, Michael I, Fatta-Kassinos D (2013) Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: a review. Sci Total Environ 447:345–360CrossRefGoogle Scholar
  39. Rizzo L, Ferro G, Manaia CM (2014a) Wastewater disinfection by solar heterogeneous photocatalysis: effect on tetracycline resistant/sensitive enterococcus strains. Global Nest J 16:455–462Google Scholar
  40. Rizzo L, Della Sala A, Fiorentino A, Li Puma G (2014b) Disinfection of urban wastewater by solar driven and UV lamp-TiO2 photocatalysis: effect on a multi drug resistant Escherichia coli strain. Water Res 53:145–152CrossRefGoogle Scholar
  41. Robertson GP (2005) Functional and therapeutic significance of Akt deregulation in malignant melanoma. Cancer Metast Rev 24:273–285CrossRefGoogle Scholar
  42. Sciacca J, Rengifo-Herrera J, Wethe PC (2011) Solar disinfection of wild Salmonella sp. in natural water with a 18 L CPC photoreactor: detrimental effect of non-sterile storage of treated water. Sol Energy 85:1399–1408CrossRefGoogle Scholar
  43. Sharma VK, Johnson N, Cizmas L, McDonald TJ, Kim H (2016) A review of the influence of treatment strategies on antibiotic resistant bacteria and antibiotic resistance genes. Chemosphere 150:702–714CrossRefGoogle Scholar
  44. Silva RC, Cardoso WM, Teixeira RSC, Albuquerque ÁH, Horn RV, Cavalcanti CM (2013) Salmonella Gallinarum virulence in experimentally infected Japanese quails (Coturnix japonica). Braz J of Poult Sci 15(1):39–45Google Scholar
  45. Simonet J, Gantzer C (2006) Inactivation of poliovirus 1 and F-specific RNA phages and degradation of their genomes by UV irradiation at 254 nanometers. Appl Environ Microbiol 72(12):7671–7677CrossRefGoogle Scholar
  46. Sinha RP, Häder DP (2002) UV-induced DNA damage and repair: a review. Photochem Photobiol Sci 1(4):225–236CrossRefGoogle Scholar
  47. Tate P, Stannera A, Shieldsa K, Smithc S, Larcom L (2006) Blackberry extracts inhibit UV-induced mutagenesis in Salmonella typhimurium TA100. Nutr Res 26:100–104CrossRefGoogle Scholar
  48. Wang J, Zhuan H, Hinton A Jr, Bowker B, Zhang J (2014) Photocatalytic disinfection of spoilage bacteria Pseudomonas fluorescens and Macrococcus caseolyticus by nano-TiO2. LWT Food Sci Technol 59(2):1009–1017CrossRefGoogle Scholar
  49. Wéry N, Lhoutellier C, Ducray F, Delgenès JP, Godon JJ (2008) Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Res 42:53–62CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of SalernoFiscianoItaly
  2. 2.CNRS, Laboratoire de Chimie Physique et Microbiologie pour l’Environnement (LCPME)UMR 7564, Institut Jean BarriolVandoeuvre-lès-NancyFrance
  3. 3.Université de LorraineLCPME, UMR 7564Vandoeuvre-lès-NancyFrance

Personalised recommendations