Skip to main content

Advertisement

Log in

The causal nexus between carbon dioxide emissions and agricultural ecosystem—an econometric approach

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Achieving a long-term food security and preventing hunger include a better nutrition through sustainable systems of production, distribution, and consumption. Nonetheless, the quest for an alternative to increasing global food supply to meet the growing demand has led to the use of poor agricultural practices that promote climate change. Given the contribution of the agricultural ecosystem towards greenhouse gas (GHG) emissions, this study investigated the causal nexus between carbon dioxide emissions and agricultural ecosystem by employing a data spanning from 1961 to 2012. Evidence from long-run elasticity shows that a 1 % increase in the area of rice paddy harvested will increase carbon dioxide emissions by 1.49 %, a 1 % increase in biomass-burned crop residues will increase carbon dioxide emissions by 1.00 %, a 1 % increase in cereal production will increase carbon dioxide emissions by 1.38 %, and a 1 % increase in agricultural machinery will decrease carbon dioxide emissions by 0.09 % in the long run. There was a bidirectional causality between carbon dioxide emissions, cereal production, and biomass-burned crop residues. The Granger causality shows that the agricultural ecosystem in Ghana is sensitive to climate change vulnerability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allen MR, Frame DJ, Huntingford C, Jones CD, Lowe JA, Meinshausen M, Meinshausen N (2009) Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458:1163–1166

    Article  CAS  Google Scholar 

  • Asumadu-Sarkodie S, Owusu PA (2016a) Carbon dioxide emission, electricity consumption, industrialization and economic growth nexus: the Beninese case. Energy Sources, Part B: Economics, Planning, and Policy. doi:10.1080/15567249.2016.1217286

    Google Scholar 

  • Asumadu-Sarkodie S, Owusu PA (2016b) Carbon dioxide emissions, GDP, energy use and population growth: a multivariate and causality analysis for Ghana, 1971-2013. Environ Sci Pollut Res Int 23:13508–13520. doi:10.1007/s11356-016-6511-x

    Article  CAS  Google Scholar 

  • Asumadu-Sarkodie S, Owusu PA (2016c) The causal effect of carbon dioxide emissions, electricity consumption, economic growth and industrialization in Sierra Leone. Energy Sources, Part B: Economics, Planning, and Policy. doi:10.1080/15567249.2016.1225135

    Google Scholar 

  • Asumadu-Sarkodie S, Owusu PA (2016d) The causal nexus between energy use, carbon dioxide emissions and macroeconomic variables in Ghana. Energy Sources, Part B: Economics, Planning, and Policy. doi:10.1080/15567249.2016.1225134

    Google Scholar 

  • Asumadu-Sarkodie S, Owusu PA (2016e) Feasibility of biomass heating system in Middle East Technical University. Northern Cyprus Campus Cogent Engineering 3:1134304. doi:10.1080/23311916.2015.1134304

    Google Scholar 

  • Asumadu-Sarkodie S, Owusu PA (2016f) Multivariate co-integration analysis of the Kaya factors in Ghana. Environ Sci Pollut Res Int 23:9934–9943. doi:10.1007/s11356-016-6245-9

    Article  CAS  Google Scholar 

  • Asumadu-Sarkodie S, Owusu PA (2016g) Recent evidence of the relationship between carbon dioxide emissions, energy use, GDP and population in Ghana: a linear regression approach energy sources, part B: economics, planning, and policy. doi:10.1080/15567249.2016.1208304

  • Asumadu-Sarkodie S, Owusu PA (2016h) The relationship between carbon dioxide and agriculture in Ghana: a comparison of VECM and ARDL model. Environ Sci Pollut Res Int 23:10968–10982. doi:10.1007/s11356-016-6252-x

    Article  CAS  Google Scholar 

  • Awasthi A, Singh N, Mittal S, Gupta PK, Agarwal R (2010) Effects of agriculture crop residue burning on children and young on PFTs in North West India. Sci Total Environ 408:4440–4445

    Article  CAS  Google Scholar 

  • Bhatia A, Jain N, Pathak H (2013) Methane and nitrous oxide emissions from Indian rice paddies, agricultural soils and crop residue burning. Greenhouse Gases-Science and Technology 3:196–211. doi:10.1002/ghg.1339

    Article  CAS  Google Scholar 

  • Couwenberg J, Dommain R, Joosten H (2010) Greenhouse gas fluxes from tropical peatlands in south-east Asia. Glob Chang Biol 16:1715–1732

    Article  Google Scholar 

  • Davis SJ, Caldeira K, Matthews HD (2010) Future CO2 emissions and climate change from existing energy infrastructure. Science 329:1330–1333

    Article  CAS  Google Scholar 

  • Dobbie KE, McTaggart IP, Smith KA (1999) Nitrous oxide emissions from intensive agricultural systems: variations between crops and seasons, key driving variables, and mean emission factors. J Geophys Res-Atmos 104:26891–26899. doi:10.1029/1999jd900378

    Article  CAS  Google Scholar 

  • FAO (2015) FAO statistical yearbooks-world food and agriculture. http://faostat3.fao.org/home/E. Accessed 24 October 2015

  • FAO (2016) Introduction & status of the forestry sector in Ghana. http://www.fao.org/docrep/003/ab567e/AB567E02.htm. Accessed 16 July 2016

  • Fitzgerald G et al (2010) Future effects of elevated CO2 on wheat production—an overview of FACE research in Victoria, Australia. In: Food security from sustainable agriculture. 15th Agronomy Conference, 15–18 November 2010, Lincoln, New Zealand. Australian Society of Agronomy, Gosford, NSW

  • Friedlingstein P, Solomon S (2005) Contributions of past and present human generations to committed warming caused by carbon dioxide. Proc Natl Acad Sci U S A 102:10832–10836

    Article  CAS  Google Scholar 

  • Granger CW (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica 424–438

  • Granger CW (1988) Some recent development in a concept of causality. J Econ 39:199–211

    Article  Google Scholar 

  • Griggs D et al (2013) Policy: sustainable development goals for people and planet. Nature 495:305–307

    Article  CAS  Google Scholar 

  • Hou Y, Velthof GL, Oenema O (2015) Mitigation of ammonia, nitrous oxide and methane emissions from manure management chains: a meta-analysis and integrated assessment. Glob Chang Biol 21:1293–1312

    Article  Google Scholar 

  • Huang Y, Zhang W, Zheng X, Li J, Yu Y (2004) Modeling methane emission from rice paddies with various agricultural practices. Journal of Geophysical Research: Atmospheres 109:1984–2012

    Google Scholar 

  • Hughes DJ, West JS, Atkins SD, Gladders P, Jeger MJ, Fitt BD (2011) Effects of disease control by fungicides on greenhouse gas emissions by UK arable crop production. Pest Manag Sci 67:1082–1092

    CAS  Google Scholar 

  • Hungate BA et al (2009) Assessing the effect of elevated carbon dioxide on soil carbon: a comparison of four meta-analyses. Glob Chang Biol 15:2020–2034

    Article  Google Scholar 

  • Huntingford C, Lowe JA, Gohar LK, Bowerman NH, Allen MR, Raper SC, Smith SM (2012) The link between a global 2 C warming threshold and emissions in years 2020, 2050 and beyond. Environ Res Lett 7:014039

    Article  Google Scholar 

  • IPCC (2014) Climate change 2014: mitigation of climate change. https://www.ipcc.ch/report/ar5/wg3/. Accessed 16 April 2016

  • Keith DW (2009) Why capture CO2 from the atmosphere? Science 325:1654–1655

    Article  CAS  Google Scholar 

  • Kludze H, Deen B, Weersink A, van Acker R, Janovicek K, De Laporte A, McDonald I (2013) Estimating sustainable crop residue removal rates and costs based on soil organic matter dynamics and rotational complexity. Biomass Bioenergy 56:607–618

    Article  Google Scholar 

  • Kutcher H, Malhi S (2010) Residue burning and tillage effects on diseases and yield of barley (Hordeum vulgare) and canola (Brassica napus). Soil Tillage Res 109:153–160

    Article  Google Scholar 

  • Li CS (2000) Modeling trace gas emissions from agricultural ecosystems. Nutr Cycl Agroecosyst 58:259–276. doi:10.1023/A:1009859006242

    Article  CAS  Google Scholar 

  • Li Y, Lin ED (2000) Emissions of N2O, NH3 and NOx from fuel combustion, industrial processes and the agricultural sectors in China. Nutr Cycl Agroecosyst 57:99–106

    Article  Google Scholar 

  • Li Y, Barton L, Chen D (2012) Simulating response of N2O emissions to fertiliser N application and climatic variability from a rain-fed and wheat-cropped soil in Western Australia. J Sci Food Agric 92:1130–1143

    Article  CAS  Google Scholar 

  • Meinshausen M et al (2009) Greenhouse-gas emission targets for limiting global warming to 2 C. Nature 458:1158–1162

    Article  CAS  Google Scholar 

  • Mohamad R, Verrastro V, Al Bitar L, Roma R, Moretti M, Al Chami Z (2015) Effect of different agricultural practices on carbon emission and carbon stock in organic and conventional olive systems. Soil Research

  • Mohiuddin O, Asumadu-Sarkodie S, Obaidullah M (2016a) The relationship between carbon dioxide emissions, energy consumption, and GDP: a recent evidence from Pakistan. Cogent Engineering 3:1210491. doi:10.1080/23311916.2016.1210491

    Google Scholar 

  • Mohiuddin O, Mohiuddin A, Obaidullah M, Ahmed H, Asumadu-Sarkodie S (2016b) Electricity production potential and social Benefits from Rice husk, a case study in Pakistan. Cogent Engineering 3:1177156. doi:10.1080/23311916.2016.1177156

    Google Scholar 

  • Mosier A, Kroeze C, Nevison C, Oenema O, Seitzinger S, Van Cleemput O (1998) Closing the global N2O budget: nitrous oxide emissions through the agricultural nitrogen cycle. Nutr Cycl Agroecosyst 52:225–248

    Article  CAS  Google Scholar 

  • Owusu P, Asumadu-Sarkodie S (2016) A review of renewable energy sources. Sustainability Issues and Climate Change Mitigation Cogent Engineering 3:1167990. doi:10.1080/23311916.2016.1167990

    Google Scholar 

  • Owusu PA, Asumadu-Sarkodie S, Ameyo P (2016) A review of Ghana’s water resource management and the future prospect. Cogent Engineering 3:1164275. doi:10.1080/23311916.2016.1164275

    Article  Google Scholar 

  • Parton WJ, Gutmann MP, Merchant ER, Hartman MD, Adler PR, McNeal FM, Lutz SM (2015) Measuring and mitigating agricultural greenhouse gas production in the US Great Plains, 1870–2000. Proc Natl Acad Sci 112:E4681–E4688

    Article  CAS  Google Scholar 

  • Ramanathan V, Feng Y (2008) On avoiding dangerous anthropogenic interference with the climate system: formidable challenges ahead. Proc Natl Acad Sci 105:14245–14250

    Article  CAS  Google Scholar 

  • Sanford RA et al (2012) Unexpected nondenitrifier nitrous oxide reductase gene diversity and abundance in soils. Proc Natl Acad Sci 109:19709–19714

    Article  CAS  Google Scholar 

  • Shcherbak I, Millar N, Robertson GP (2014) Global metaanalysis of the nonlinear response of soil nitrous oxide (N2O) emissions to fertilizer nitrogen. Proc Natl Acad Sci 111:9199–9204

    Article  CAS  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Glob Biogeochem Cycles 13:647–662

    Article  CAS  Google Scholar 

  • Steffen W et al (2011) The Anthropocene: from global change to planetary stewardship. Ambio 40:739–761

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677

    Article  CAS  Google Scholar 

  • Vasilica S, Fîntîneru G, Mihalache M (2014) Multicriteria analysis of the effects of field burning crop residues. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 42:255–262

    Google Scholar 

  • Viana M et al (2013) Evidence of biomass burning aerosols in the Barcelona urban environment during winter time. Atmos Environ 72:81–88

    Article  CAS  Google Scholar 

  • Wigley TM (2005) The climate change commitment. Science 307:1766–1769

    Article  CAS  Google Scholar 

  • World Bank (2014) World Development Indicators. http://data.worldbank.org/country. Accessed 24 October 2015

  • Xu P, Zhang Y, Gong W, Hou X, Kroeze C, Gao W, Luan S (2015) An inventory of the emission of ammonia from agricultural fertilizer application in China for 2010 and its high-resolution spatial distribution Atmospheric Environment

  • Zeebe RE (2013) Time-dependent climate sensitivity and the legacy of anthropogenic greenhouse gas emissions Proceedings of the National Academy of Sciences 110:13739–13744

  • Zhang T, Wooster MJ, Green DC, Main B (2015) New field-based agricultural biomass burning trace gas, PM 2.5, and black carbon emission ratios and factors measured in situ at crop residue fires in Eastern China. Atmospheric Environment

Download references

Acknowledgment

SAS expresses his sincere gratitude to Prof. Dr. Ali Cevat Taşıran of Middle East Technical University, Northern Cyprus campus, who provided the seed and earlier guidance for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samuel Asumadu-Sarkodie.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

ESM 1

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asumadu-Sarkodie, S., Owusu, P.A. The causal nexus between carbon dioxide emissions and agricultural ecosystem—an econometric approach. Environ Sci Pollut Res 24, 1608–1618 (2017). https://doi.org/10.1007/s11356-016-7908-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7908-2

Keywords

JEL classification

Navigation