Skip to main content
Log in

Is lithium biologically an important or toxic element to living organisms? An overview

Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Industrialized world is exposing living organisms to different chemicals and metals such as lithium (Li). Due to their use in common household items to industrial applications, it is imperative to examine their bioavailability. Lithium belongs to the group IA and also has wider uses such as in batteries, air conditioners to atomic reactors. Lithium occurs naturally in soil and water, mostly at low concentrations, and enters the food chain. It is not one of the essential minerals though various studies indicate that low levels of Li have beneficial effects on living organisms, whereas high levels expose them to toxicity and related detrimental effects. This review suggests that Li could be biologically important to living organism depending upon its concentration/exposure. Little is known about its biological importance and molecular understanding of its accumulation and mode of action, which might have future implications for Li’s long-term effects on living organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  • AICS (2007) Australia Inventory of Chemical Substances. http://www.nicnas.gov.au/Industry/AICS/ViewChemical.asp?SingleHit=1&Chemical_Id=10984&docVerS

  • Alderman CP, Lindsay KSW (1996) Increased serum lithium concentration secondary to treatment with tiaprofenic acid and fosinopril. Ann Pharmacother 30:1411–1413

    CAS  Google Scholar 

  • Allender WJ, Cresswell GC, Kaldor J, Kennedy IR (1997) Effect of lithium and lanthanum on herbicide induced hormesis in hydroponically-grown cotton and corn. J Plant Nutr 20:81–95

    Article  CAS  Google Scholar 

  • Amdisen A (1988) Clinical features and management of lithium poisoning. Med Toxicol 3:18–32

    Article  CAS  Google Scholar 

  • Anderson BG (1948) The apparent thresholds of toxicity to Daphnia magna for chlorides of various metals when added to Lake Erie water. Trans. Am. Fish. Soc. 78:96–113

  • Anderson MA, Bertsch PM, Miller WP (1988) The distribution of lithium in selected soils and surface waters of the southeastern USA. Appl. Geochem. 3(2):205–212

  • Anke M, Arnhold W, Groppel U, Krause U (1991) The biological importance of lithium. In: Schrauzer GN, Klippel KF (eds) Lithium in biology and medicine. Weinheim, VCH Verlag, pp. 149–167

    Google Scholar 

  • Aral H, Vecchio-Sadus A (2008) Toxicity of lithium to humans and the environment—a literature review. Ecotoxicol Environ Saf 70:349–356

    Article  CAS  Google Scholar 

  • Bach RO, Gallicchio VS (eds) (2012) Lithium and cell physiology. Springer Science & Business Media, Berlin

    Google Scholar 

  • Backstrom S (1954) Morphogenetic effects of lithium on the embryonic development of Xenopus. Ark Zool 6:527–536

    Google Scholar 

  • Bartolo ME, Carter JV (1991) Microtubules in mesophyll cells of Nonacclimated and cold-acclimated spinach visualization and responses to freezing, low temperature, and dehydration. Plant Physiol 97(1):175–181

    Article  CAS  Google Scholar 

  • Becker RW, Tyobeka EM (1990) Lithium enhances proliferation of HL60 promyelocytic leukemia cells. Leukemia Res 14:879–884

    Article  CAS  Google Scholar 

  • Becker F, Buschfeld E, Schell J, Bachmair A (1993) Altered response to viral infection by tobacco plants perturbed in ubiquitin system. Plant J 3:875–881

    Article  Google Scholar 

  • Berridge MJ (1993) Inositol triphosphate and calcium signalling. Nature 361:315–325

    Article  CAS  Google Scholar 

  • Biffen M, Hanke DE (1990) Reduction in the leve1of intracellular myo-inositol in cultured soybean (Glycine max) cells inhibits cell division. Biochem J 265:809–814

    Article  CAS  Google Scholar 

  • Birch NJ (1976) Possible mechanisms for biological action of lithium. Nature 204:681

    Article  Google Scholar 

  • Birch NJ (2012) Lithium and the cell: pharmacology and biochemistry. Academic Press, New York

    Google Scholar 

  • Biwa WB, Gimlich RL (1989) Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglyceral analog. Develop. Biol. 132:315–324

  • Boller T (1984) Superinduction of ACC synthase in tomato pericarp by lithium ions. In: Fuchs Y, Chalutz E (eds) Ethylene: biochemical, physiological and applied aspects. Nijhoff/Junk, The Hague, pp. 87–88

    Chapter  Google Scholar 

  • Boller T (1990) Ethylene and plant–pathogen interaction. In: Flores HE, Arteca RN, Shannon JC (eds) Polyamines and ethylene: biochemistry, physiology and interactions. American Society of Plant Physiologists, Rockville, pp. 138–145

    Google Scholar 

  • Bonino CA, Ji L, Lin Z, Toprakci O, Zhang X, Khan SA (2011) Electrospun carbon-tin oxide composite nanofibers for use as lithium ion battery anodes. ACS Appl Mater Interfaces 3:2534–2542

    Article  CAS  Google Scholar 

  • Boyer N, Chapelle B, Gaspar T (1979) Lithium inhibition of the thigmo-morphogenetic response in Bryonia dioica. Plant Physiol 63:1215–1216

    Article  CAS  Google Scholar 

  • Brogårdh T, Johnsson A (1974) Effects of lithium on stomatal regulation. Zeitschrift für Naturforschung C 29(5-6):298-300

  • Busa WB, Gimlich RL (1989) Lithium-induced teratogenesis in frog embryos prevented by a polyphosphoinositide cycle intermediate or a diacylglycerol analog. Dev Biol 132:315–324

    Article  CAS  Google Scholar 

  • Bustuoabad OD, Pisano A, Herkovits J (1977) Different sensitivity to lithium ion during the segmentation of Bufo arenarum eggs. Acta Embryologiae Experimentalis (Italy)

  • Carlier G, Thellier M (1979) Lithium-perturbation of the induction of a methyl glucose transport during aging of foliar disks of Pelargonium zonale (L.) aiton. Physiol 6(17):13–26

    Google Scholar 

  • Casarett LJ, Doull J (1987) Toxicology: the basic science of poisons, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Castillo-Quan JI, Li L, Kinghorn KJ, Ivanov DK, Tain LS, Slack C, Kerr F, Nespital T, Thornton J, Hardy J, Bjedov I (2016) Lithium promotes longevity through GSK3/NRF2-dependent hormesis. Cell Rep 15:638–650

    Article  CAS  Google Scholar 

  • Chan HH, Wing Y, Su R, Van Krevel C, Lee S (2000) A control study of the cutaneous side effects of chronic lithium therapy. J Affect Disord 57:107–113

    Article  CAS  Google Scholar 

  • Chmielnicka J, Nasiadek M (2003) The trace elements in response to lithium intoxication in renal failure. Ecotoxicol Environ Saf 55:178–183

    Article  CAS  Google Scholar 

  • Clemens S (2006) Evolution and function of phytochelatin synthases. J Plant Physiol 163:319–332

    Article  CAS  Google Scholar 

  • Colombo R, Milzani A, Contini P, Donne I-D (1991) Effects of lithium ions on actin polymerization in the presence of magnesium ions. Biochem J 274:421–426

    Article  CAS  Google Scholar 

  • Conejero V, Bellés JM, García-Breijo F, Garro R, HernándezYago J, Rodrigo I, Vera P (1990) Signaling in viroid pathogenesis. In: Fraser RSS (ed) Recognition and response in plant-virus interactions. Springer, Berlin Heidelberg New York, pp. 1883–1886

    Google Scholar 

  • Dawson EB (1991) The relationship of tap water and physiological levels of lithium to mental hospital admission and homicide in Texas. In: Schrauzer GN, Klippel KF (eds) Lithium in biology and medicine. Weinheim, VCH Verlag, pp. 171–187

    Google Scholar 

  • Desbiez MO, Thellier M (1975) Lithium inhibition of the mechanically induced precedence between cotyledonary buds. Plant Sci Lett 4:315–321

    Article  CAS  Google Scholar 

  • Dichtl B, Stevens A, Tollervey D (1997) Lithium toxicity is due to inhibition of RNA processing enzymes. EMBO J 16:7184–7195

    Article  CAS  Google Scholar 

  • Dubey RS (2005) Photosynthesis in plants under stressful conditions. In: Handbook of photosynthesis. Marcel Dekker, New York, pp. 859–875

    Google Scholar 

  • Duff MC, Kuhne WW, Halverson NV, Chang CS, Kitamura E, Hawthorn L, Stieve-Caldwell E (2014) mRNA transcript abundance during plant growth and the influence of Li exposure. Plant Sci 229:262–279

  • Dwyer FJ, Burch SA, Ingersoll CG, Hunn JB (1992) Toxicity of trace element and salinity mixtures to striped bass (Morone Saxatilis) and Daphnia Magna. Environ Toxicol Chem 11:513–520

    Article  CAS  Google Scholar 

  • Ecker JR, Davis RW (1987) Plant defense genes are regulated by ethylene. Proc Natl Acad Sci U S A 84:5202–5206

    Article  CAS  Google Scholar 

  • Emery R, Klopfer DC, Skalski JR (1981) Incipient toxicity of lithium to freshwater organisms representing a salmonid habitat. Battelle Pacific Northwest Labs., Richland, WA (USA)

  • Engelmann W (1972) Lithium slows down the Kalanchoe clock. Z Naturforsch 27(4):477

    Article  CAS  Google Scholar 

  • Engelmann W (1973) A slowing down of circadian rhythms by lithium ions. Z Naturforsch 28:733–736

    CAS  Google Scholar 

  • Erakovic V, Zupan G, Varljen J, Laginja J, Simonic A (2000) Lithium plus pilocarpine induced status epilepticus-biochemical changes. Neurosci Res 36:157–166

    Article  CAS  Google Scholar 

  • Finley PR, Warner MD, Peabody CA (1995) Clinical relevance of drug interactions with lithium. Clin Pharmacokinet 29:172–191

    Article  CAS  Google Scholar 

  • Finley PR, O’Brien JG, Coleman RW (1996) Lithium and angiotensin converting enzyme inhibitors: evaluation of a potential interaction. J Clin Psychopharm 16:68–71

    Article  CAS  Google Scholar 

  • Forment J, Naranjo MA, Roldán M, Serrano R, Vicente O (2002) Expression of Arabidopsis SR-like splicing proteins confers salt tolerance to yeast and transgenic plants. Plant J 30:511–519

    Article  CAS  Google Scholar 

  • Gaillochet J (1981) Effect of the lithium chloride on the leaf movements of Cassia fasciculata. Planta 151(6):544–548

    Article  CAS  Google Scholar 

  • Gallicchio VS (1990) Effects of lithium on cell growth. In: Lithium and cell physiology. Springer, New York, pp. 121–124

    Chapter  Google Scholar 

  • Gillaspy GE, Keddie JS, Oda K, Gruissem W (1995) Plant inositol monophosphatase is a lithium-sensitive enzyme encoded by a multigene family. Plant Cell 7:2175–2185

    Article  CAS  Google Scholar 

  • Gil-Mascarell R, López-Coronado JM, Bellés JM, Serrano R, Rodríguez PL (1999) The Arabidopsis HAL2-like gene family includes a novel sodium-sensitive phosphatase. Plant J 17:373–383

    Article  CAS  Google Scholar 

  • Greger R (1990) Possible sites of lithium transport in the nephron. Kidney Int 28:S26–S30

    CAS  Google Scholar 

  • Hall TS (1942) The mode of action of lithium salts in amphibian development. J Exp Zool 89:1–35

    Article  CAS  Google Scholar 

  • Hamilton SJ (1995) Hazard assessment of inorganics to three endangered fish in the Green River, Utah. Ecotox Environ Saf 30:134–142

    Article  CAS  Google Scholar 

  • Harpaz-Saad S, Azoulay T, Arazi T, Ben-Yaakov E, Mett A, Shiboleth YM et al (2007) Chlorophyllase is a rate-limiting enzyme in chlorophyll catabolism and is posttranslationally regulated. Plant Cell 19:1007–1022

    Article  CAS  Google Scholar 

  • Hawrylak-Nowak B, Kalinowska M, Szymańska M (2012) A study on selected physiological parameters of plants grown under lithium supplementation. Biol Trace Elem Res 149:425–430

    Article  CAS  Google Scholar 

  • Herbers K, Meuwly P, Frommer WB, Metraux J-P, Sonnewald U (1996) Systemic acquired resistance mediated by the ectopic expression of invertase: possible hexose sensing in the secretory pathway. Plant Cell 8:793–803

    Article  CAS  Google Scholar 

  • Hill BR, Gilliom RJ (1993) Streamflow, dissolved solids, suspended sediment, and trace elements, San Joaquin River, California, June 1985–September 1988, United States Geological Survey Open-File Report, Water-Resources Paper 2254. Washington, DC: U.S Government Printing Office

  • Holstein-Rathlou NH (1990) Lithium transport across biological membranes. Kidney Int 37:14–19

    Article  Google Scholar 

  • Huh Y, Chan LH, Zhang L, Edmond JM (1998) Lithium and its isotopes in major world rivers: implications for weathering and the oceanic budget. Geochim Cosmochim Acta 62:2039–2051

    Article  CAS  Google Scholar 

  • Inokuchi A, Yamamoto R, Morita F, Takumi S, Matsusaki H, Ishibashi H, Tominaga N, Arizono K (2015) Effects of lithium on growth, maturation, reproduction and gene expression in the nematode Caenorhabditis elegans. J Appl Toxicol 35:999–1006

    Article  CAS  Google Scholar 

  • Iqbal K, Khan A, Khatak MMAK (2004) Biological significance of ascorbic acid (vitamin C) in human health—a review. Pak J Nutr 3:5–13

    Article  Google Scholar 

  • Jaeger A (2003) Lithium. Medicine. Medicine Publishing Co. Ltd, p 58

  • Jiang L, Wang L, Mu SY, Tian C (2014) Apocynum venetum: A newly found lithium accumulator. Flora-Morphology, Distribution, Functional Ecology of Plants 209(5):285–289

  • Kabata-Pendias A, Mukherjee AB (2007) Trace elements from soil to human. Springer, Berlin, pp. 87–93

    Book  Google Scholar 

  • Kalinowska M, Hawrylak-Nowak B, Szymańska M (2013) The influence of two lithium forms on the growth, L-ascorbic acid content and lithium accumulation in lettuce plants. Biol Trace Elem Res 152:251–257

    Article  CAS  Google Scholar 

  • Kandeler R (1970) [The effect of lithium and ADP on the phytochrome regulation of flowering]. Planta 90(2):203–207. doi10.1007/s11356-016-7898-0

  • Kanematsu N, Hara M, Kada T (1980) Rec assay and mutagenicity studies on metal compounds. Mutation Research/Genetic Toxicology 77(2): 109–116

  • Kato T, Fujii K, Shiori T, Inubushi T, Takhashi S (1996) Lithium side effects in relation to brain lithium concentration measured by lithium-7 magnetic resonance spectroscopy. Prog Neuro-Psychopharmacol Biol Psychiatry 20:87–97

    Article  CAS  Google Scholar 

  • Kent NL (1941) Absorption, translocation and ultimate fate of lithium in the wheat plant. New Phytol 40:291–298

    Article  CAS  Google Scholar 

  • King MC, Beikirch H, Eckhardt K, Gocke E, Wild D (1979) Mutagenicity studies with X-ray contrast media, analgesics, antipyretics, antirheumatics and some other pharmaceutical drugs in bacterial drosophila and mammalian test systems. Mutat Res 66:33–43

    Article  Google Scholar 

  • Kjølholt J, Stuer-Lauridsen F, Skibsted Mogensen A, Havelund S (2003) The elements in the second rank—lithium. Miljoministeriet, Copenhagen, Denmark /www2.mst.dk/common/Udgivramme/Frame.asp?pg¼ http://www2mst.dk/udgiv/publications/2003/87-7972-491-4/html/bill08_eng.htmS

  • Klein PS, Melton DA (1996) A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci U S A 93:8455–8459

    Article  CAS  Google Scholar 

  • Klemfuss H, Schirauzer GN (1995) Effects of nutritional lithium deficiency on behavior in rats. Biological trace element research 48(2):131–139

  • Kszos LA, Stewart AJ (2003a) Review of lithium in the aquatic environment: distribution in the United States, toxicity and case example of groundwater contamination. Ecotox 12:439–447

    Article  CAS  Google Scholar 

  • Kszos LA, Beauchamp JJ, Stewar AJ (2003b) Toxicity of lithium to three freshwater organisms and the antagonistic effect of sodium. Ecotoxicol 12:427–437

  • Kuznetsov IA, Lukanin AS, Tsurkanov LF (1971) Effect of ions of the alkaline metals on the secondary structure of DNA. IV. Thermal denaturing deoxyribonucleates of alkaline metals in solution with a low ionic strength. Biofizika 16:144–145

    CAS  Google Scholar 

  • Lambert J (1983) Lithium content in the grassland vegetation. In: Anke M, Baumann W, Bräunlich H, Brückner C (eds) Proceedings 4. Spurenelement symposium 1983. VEB Kongressdruck, Jena, pp. 32–38

    Google Scholar 

  • Lazou A, Beis A (1993) Lithium induces changes in the plasma membrane protein pattern of early amphibian embryos. Biol Cell 77:265–268

    Article  CAS  Google Scholar 

  • Lehmann K, Ritz E (1995) Angiotensin-converting enzyme inhibitors may cause renal dysfunction in patients on long-term lithium treatment. Am J Kidney Dis 25:82–87

    Article  CAS  Google Scholar 

  • Lenntech (2007) Lithium and water: reaction mechanisms, environmental impact and health effects. http://www.lenntech.com/elements-and-water/lithium-andwater.htmS

  • Lenox RH, McNamara RK, Papke RL, Manji HK (1998) Neurobiology of lithium: an update. J Clin Psychiatry 58:37–47

    Google Scholar 

  • Léonard A, Hantson P, Gerber GB (1995) Mutagenicity, carcinogenicity and teratogenicity of lithium compounds. Mutat Res/Rev Genet Toxicol 339(3):131–137

    Article  Google Scholar 

  • Li X, Gao P, Gjetvaj B, Westcott N, Gruber MY (2009) Analysis of the metabolome and transcriptome of Brassica carinata seedlings after lithium chloride exposure. Plant Sci 177:68–80

    Article  CAS  Google Scholar 

  • Liang X, Shen NF, Theologis A (1996) Li-regulated 1-aminocyclopropane-1-carboxylate synthase gene expression in Arabidopsis Thaliana. Plant J 10:1027–1036

  • Linakis JG (2007) Toxicity, lithium. eMedicine, 8 January 2007. http://www.emedicine.com/EMERG/topic301.htmS

  • Litovitz TL, Smilkstein M, Felberg L, Klein-Schwartz W, Berlin R, Morgan JL (1997) Annual report of the American Association of Poison Control Centers Toxic Exposure Surveillance System. Am J Emerg Med 15:447–500

    Article  CAS  Google Scholar 

  • Long KE, Brown RP Jr, Woodburn KB (1998) Lithium chloride: a flow-through embryo-larval toxicity test with the fathead minnow, Pimephales Promelas Rafinesque. Bull Environ Contamin Toxicol 60:312–317

    Article  CAS  Google Scholar 

  • Magalhães JR, Wilox GE, Rocha ANF, Silva FLIM (1990) Research on lithium-phytological metabolism and recovery of hypo-lithium. Pesq Agropec Bras 25:1781–1787

    Google Scholar 

  • Majerus PW (1992) Lnositol phosphate biochemistry. Annu Rev Biochem 61:225–250

    Article  CAS  Google Scholar 

  • Makus DJ, Zibilske L, Lester G (2006) Effect of light intensity, soil type, and lithium addition on spinach and mustard greens leaf constituents. Subtrop Plant Sci 58:35–41

    Google Scholar 

  • Marre E, Lado P, Rasi-Caldogno F, Colombo R, De Michelis MI (1974) Evidence for the coupling of proton extrusion to K+ uptake in pea internode segments treated with fusicoccin or auxin. Plant Sci Lett 3:365–379

    Article  CAS  Google Scholar 

  • Meisel JD, Kim DH (2016) Inhibition of lithium-sensitive phosphatase BPNT-1 causes selective neuronal dysfunction in C. elegans. Curr Biol 26:1922–1928

    Article  CAS  Google Scholar 

  • Millet B, Badot P (1996) The revolving movement mechanism in Phaseolus; new approaches to old questions. In: Greppin H, Degli Agosti R, Bonzon M (eds) Vistas on Biorhythmicity. University of Geneva, Geneva, pp. 77–98

    Google Scholar 

  • Mittler R, Shulaev V, Lam E (1995) Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7:29–42

    Article  CAS  Google Scholar 

  • Morris EO (1958) Yeast growth. In: Cook AH (ed) The chemistry and biology of yeasts. Academic Press Inc., New York, p. 301

    Google Scholar 

  • Murguía JR, Bellés JM, Serrano R (1996) The yeast HAL2 nucleotidase is an in vivo target of salt toxicity. J Biol Chem 271:29029–29033

    Article  Google Scholar 

  • Naranjo A, Romero C, Bellés JM, Montesinos C, Vicente O, Serrano R (2003) Lithium treatment induces a hypersensitive-like response in tobacco. Planta 217:417–424

    Article  CAS  Google Scholar 

  • Nciri R, Allagui MS, Bourogaa E, Saoudi M, Murat JC, Croute F, Elfeki A (2012) Lipid peroxidation, antioxidant activities and stress protein (HSP72/73, GRP94) expression in kidney and liver of rats under lithium treatment. J Physiol Biochem 68:11–18

    Article  CAS  Google Scholar 

  • Nishioka H (1975) Mutagenic activities of metal compounds in bacteria. Mutat Res 31:185–189

    Article  CAS  Google Scholar 

  • Okusa MD, Crystal LJT (1994) Clinical manifestations and management of acute lithium intoxication. Am J Med 97:383–389

    Article  CAS  Google Scholar 

  • Paves H, Neuman T, Metsis M, Saarma M (1990) Nerve growth factor-induced rapid reorganization of microfilaments in PC12 cells: possible roles of different second messenger systems. Exp Cell Res 186:218–226

    Article  CAS  Google Scholar 

  • Phiel CJ, Klein PS (2001) Molecular targets of lithium action. Annu Rev Pharmacol Toxicol 41:789–813

    Article  CAS  Google Scholar 

  • Rao DS, Pan Y, Mukhida K (1998) Production of domoic acid by Pseudo-Nitzschia Multiseries Hasle, affected by lithium. Mar Ecol 19:31–36

    Article  Google Scholar 

  • Richard MJ, Belleville F, Chalas J, Ceballos-Picot I, Vitoux D, Boyer MJ, Haudiere J, Favier A (1997) Glutathione peroxidases: value of their determination in clinical biology. Ann Biol Clin 55:195–207

    CAS  Google Scholar 

  • Roberts IN, Lloyd CW, Roberts K (1985) Ethylene-induced microtubule reorientations: mediated by helical arrays. Planta 164:439–447

    Article  CAS  Google Scholar 

  • Roblin G (1980) Fusicoccin-induced H § excretion in the sensitive plant pulvini. Plant Physiol 65(S):912

    Google Scholar 

  • Roelfsema MRG, Hedrich R (2005) In the light of stomatal opening: new insights into ‘the Watergate’. New Phytol 167(3):665–691

    Article  CAS  Google Scholar 

  • Sadosty AT, Groleau GA, Atcherson MM (1999) The use of lithium levels in the emergency department. J Emerg Med 17:887–891

    Article  CAS  Google Scholar 

  • Saeidnia S, Abdollahi M (2013) Concerns on the growing use of lithium: the pros and cons. Iran Red Crescent Med J 15(8):629–632

    Article  Google Scholar 

  • Sapse AM, Schleyer PR (1995) Lithium chemistry: a theoretical and experimental overview. Wiley, New York

    Google Scholar 

  • Sato T, Theologis A (1989) Cloning the messenger encoding 1-aminocyclopropane-l-carboxylate synthase, the key enzyme for ethylene biosynthesis in plants. Proc Natl Acad Sci U S A 86:6621–6625

    Article  CAS  Google Scholar 

  • Satter RL, Applewhite PB, Kreis DJ, Galston AW (1973) Rhythmic leaflet movement in Albizzia julibrissin. Effect of electrolytes and temperature alteration. Plant Physiol 52:202–207

    Article  CAS  Google Scholar 

  • Schou M (1968) Lithium in psychiatric therapy and prophylaxis. J Psychiatr Res 6:67–95

    Article  CAS  Google Scholar 

  • Schrauzer GN (2002) Lithium: occurrence, dietary intakes, nutritional essentiality. J Am Coll Nutr 21:14–21

    Article  CAS  Google Scholar 

  • Schrauzer GN, Shrestha KP (1990) Lithium in drinking water and the incidences of crimes, suicides, and arrests related to drug addictions. Biological Trace Element Research 25(2):105–113

  • Schrauzer GN, Shrestha KP, Flores-Arce MF (1992) Lithium in scalp hair of adults, students and violent criminals. Biol Trace El Res 34:161–176

    Article  CAS  Google Scholar 

  • Scrosati B, Garche J (2010) Lithium batteries: status, prospects and future. J Power Sources 195:2419–2430

    Article  CAS  Google Scholar 

  • Shahzad B, Tanveer M, Hassan W, Shah AN, Anjum SA, Cheema SA, Ali I (2016) Lithium toxicity in plants: reasons, mechanisms and remediation possibilities–a review. Plant Physiol Biochem 107:104–115

    Article  CAS  Google Scholar 

  • Smithberg M, Dixit PK (1982) Teratogenic effects of lithium in mice. Teratology 26:239–246

    Article  CAS  Google Scholar 

  • Stockar CR (1906) The development of Fundulus heteroclitus in solutions of lithium chlorid, with appendix on its development in fresh water. Journal of Experimental Zoology 3(1):99–120

  • Stolarz M, Król E, Dziubińska H, Zawadzki T (2008) Complex relationship between growth and circumnutations in Helianthus annuus stem. Plant Signal Behav 3:376–380

    Article  Google Scholar 

  • Stolarz M, Król E, Dziubińska H, Kurenda A (2010) Glutamate induces series of action potentials and a decrease in circumnutation rate in Helianthus annuus. Physiol Plant 138:329–338

    Article  CAS  Google Scholar 

  • Stolarz M, Król E, Dziubińska H (2015) Lithium distinguishes between growth and circumnutation and augments glutamate-induced excitation of Helianthus annuus seedlings. Acta Physiol Plant 37(4):1–9

    Article  CAS  Google Scholar 

  • Strobusch AD, Jefferson JW (1980) The checkered history of lithium in medicine. Pharm Hist 22:72–76

    CAS  Google Scholar 

  • Tadege M, Bucher M, Stahli W, Suter M, Dupuis I, Kuhlemeier C (1998) Activation of plant defense responses and sugar efflux by expression of pyruvate decarboxylase in potato leaves. Plant J 16:661–671

    Article  CAS  Google Scholar 

  • Tandon A, Dhawan DK, Nagpaul JP (1998) Effect of lithium on hepatic lipid peroxidation and antioxidative enzymes under different dietary protein regimens. J Appl Toxicol 18:187–190

    Article  CAS  Google Scholar 

  • Terao T, Nakano H, Inoue Y, Okamoto T, Nakamura J, Iwata N (2006) Lithium and dementia: a preliminary study. Prog Neuropsychopharm Biol Psychiatry 30(6):125–1128

    Article  CAS  Google Scholar 

  • Thellier M, Thoiron B, Thoiron A, Le GuM J, LtRtge U (1980) Effects of lithium and potassium on recovery of solute uptake capacity of Acer pseudoplatanus cells after gas-shock. Physiol Plant 49:93–99

    Article  CAS  Google Scholar 

  • Timmer RT, Sands JM (1999) Lithium intoxication. J Am Soc Nephro 10:666–674

    CAS  Google Scholar 

  • Tölgyesi G, Die Verbreitung des (1983) Lithiums in ungarischen Böden und Pflanzen. In: Anke M, Baumann W, Bräunlich H, Brückner C (eds) Proceedings 4. Spurenelement symposium 1983. VEB Kongressdruck, Jena, pp. 39–44

    Google Scholar 

  • Tsuruta T (2005) Removal and recovery of lithium using various microorganisms. J Biosci Bioeng 100:562–566

    Article  CAS  Google Scholar 

  • US EPA (2008) ECOTOX retrieval database

  • Vlasyuk PA, Kuz’menko LM, Okhrimenko ME (1975a) Content and fractional composition of potato protein and nucleic acids under lithium effect. Dopov Akad Nauk Ukr RSR Ser B: Geol Geofi z Khim Bioi, pp 742–748

  • Vlasyuk PA, Okhrimenko ME, Kuz’menko LM (1975b) Fractional and amino acidic compositions of proteins and content of free amino acids in potato under the influence of lithium. Fiziol Biokhim Kul’t Rast 7:115–120

    CAS  Google Scholar 

  • Vlasyuk PA, Kuz’menko LM, Okhrimenko MF (1979) The role of lithium in protein-nucleic acid metabolism in plants. Fiziol Biokhim Kul’t Rast 11:438–447

    CAS  Google Scholar 

  • Weeks ME (1956) Discovery of the elements, 6th edn. J Chem Educ Easton, p 578

  • Weiner ML (1991) Overview of lithium toxicology. In: Schrauzer GN, Klippel KF (eds) Lithium in biology and medicine. Weinheim, VCH Verlag, pp. 83–99

    Google Scholar 

  • Zachariassen E, Johnsson A (1988) Effects of lithium ions on the circumnutations of helianthus hypocotyls. Physiol Plant 72:147–152

    Article  CAS  Google Scholar 

  • Zaldivar R (1989) High lithium concentrations in drinking water and plasma of exposed subjects. Arch Toxicol 46:319–320

    Article  Google Scholar 

  • Zhu F, Li Q, Zhang F, Sun X, Cai G, Zhang W, Chen X (2015) Chronic lithium treatment diminishes the female advantage in lifespan in Drosophila melanogaster. Clin Exp Pharmacol Physiol 42:617–621

    Article  CAS  Google Scholar 

  • Zonia LE, Tupy J (1995a) Lithium treatment of Nicotiana tabacum microspores blocks polar nuclear migration, disrupts the partitioning of membrane-associated Ca2+ and induces symmetrical mitosis. Sex Plant Reprod 8:152–160

    Article  Google Scholar 

  • Zonia LE, Tupy J (1995b) Lithium-sensitive calcium activity in the germination of apple (Malus · domestica Borkh.), tobacco (Nicotiana tabacum L.), and potato (Solanum tuberosum L.) pollen. J Exp Bot 46:973–979

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mudassar Niaz Mughal.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahzad, B., Mughal, M.N., Tanveer, M. et al. Is lithium biologically an important or toxic element to living organisms? An overview. Environ Sci Pollut Res 24, 103–115 (2017). https://doi.org/10.1007/s11356-016-7898-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7898-0

Keywords

Navigation