Skip to main content

Advertisement

Log in

Leaching of mercury from seal carcasses into Antarctic soils

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

More than 400 seal mummies and skeletons are now mapped in the northern part of James Ross Island, Antarctica. Decomposing carcasses represent a rare source of both organic matter and associated elements for the soil. Owing to their high trophic position, seals are known to carry a significant mercury body burden. This work focuses on the extent of the mercury input from seal carcasses and shows that such carcasses represent locally significant sources of mercury and methylmercury for the environment. Mercury contents in soil samples from the surrounding areas were determined using a single-purpose AAS mercury analyzer. For the determination of methylmercury, an ultra-sensitive isotopic dilution HPLC-ICP-MS technique was used. In the soils lying directly under seal carcasses, mercury contents were higher, with levels reaching almost 40 μg/kg dry weight of which methylmercury formed up to 2.8 % of the total. The spatial distribution implies rather slow vertical transport to the lower soil layers instead of a horizontal spread. For comparison, the background level of mercury in soils of the investigated area was found to be 8 μg/kg dry weight, with methylmercury accounting for less than 0.1 %. Apart from the direct mercury input, an enhanced level of nutrients in the vicinity of carcasses enables the growth of lichens and mosses with accumulative ability with respect to metals. The enhanced capacity of soil to retain mercury is also anticipated due to the high content of total organic carbon (from 1.6 to 7.5 %). According to the results, seal remains represent a clear source of mercury in the observed area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bargagli R (2005) Antarctic ecosystems: environmental contamination, climate change, and human impact. Springer-Verlag, Berlin

    Google Scholar 

  • Bargagli R (2008) Environmental contamination in Antarctic ecosystems. Sci Total Environ 400:212–226. doi:10.1016/j.scitotenv.2008.06.062

    Article  CAS  Google Scholar 

  • Bargagli R, Battisti E, Focardi S, Formichi P (1993) Preliminary data on environmental distribution of mercury in northern Victoria Land, Antarctica. Antarct Sci 5:3–8. doi:10.1017/S0954102093000021

    Article  Google Scholar 

  • Bargagli R, Monaci F, Sanchez-Hernandez JC, Cateni D (1998) Biomagnification of mercury in an Antarctic marine coastal food web. Mar Ecol Prog Ser 169:65–76. doi:10.3354/meps169065

    Article  CAS  Google Scholar 

  • Bargagli R, Agnorelli C, Borghini F, Monaci F (2005) Enhanced deposition and bioaccumulation of mercury in Antarctic terrestrial ecosystems facing a coastal polynya. Environ Sci Technol 39:8150–8155. doi:10.1021/es0507315

    Article  CAS  Google Scholar 

  • Bargagli R, Monaci F, Bucci C (2007) Environmental biogeochemistry of mercury in Antarctic ecosystems. Soil Biol Biochem 39:352–360. doi:10.1016/j.soilbio.2006.08.005

    Article  CAS  Google Scholar 

  • Barker PF, Thomas E (2004) Origin, signature and palaeoclimatic influence of the Antarctic Circumpolar Current. Earth-Science Rev 66:143–162. doi:10.1016/j.earscirev.2003.10.003

    Article  Google Scholar 

  • Blais JM, Macdonald RW, Mackay D et al (2007) Biologically mediated transport of contaminants to aquatic systems. Environ Sci Technol 41:1075–1084. doi:10.1021/es061314a

    Article  CAS  Google Scholar 

  • Boening DW (2000) Ecological effects, transport, and fate of mercury: a general review. Chemosphere 40:1335–1351. doi:10.1016/S0045-6535(99)00283-0

    Article  CAS  Google Scholar 

  • Brookens TJ, Harvey JT, O’Hara TM (2007) Trace element concentrations in the Pacific harbor seal (Phoca vitulina richardii) in central and northern California. Sci Total Environ 372:676–692. doi:10.1016/j.scitotenv.2006.10.006

    Article  CAS  Google Scholar 

  • Brookens TJ, O’Hara TM, Taylor RJ et al (2008) Total mercury body burden in Pacific harbor seal, Phoca vitulina richardii, pups from central California. Mar Pollut Bull 56:27–41. doi:10.1016/j.marpolbul.2007.08.010

    Article  CAS  Google Scholar 

  • Caroli S, Cescon P, Walton DWH (2001) Environmental contamination in Antarctica: a challenge to analytical chemistry. Elsevier, Oxford

    Google Scholar 

  • Claridge GGC, Campbell IB, Powell HKJ et al (1995) Heavy metal contamination in some soils of the McMurdo Sound region, Antarctica. Antarct Sci 7:9–14

    Article  Google Scholar 

  • Cossaboon JM, Ganguli PM, Flegal AR (2015) Mercury offloaded in northern elephant seal hair affects coastal seawater surrounding rookery. Proc Natl Acad Sci 112:12058–12062. doi:10.1073/pnas.1506520112

    Article  CAS  Google Scholar 

  • Coufalík P, Zvěřina O, Krmíček L et al (2015) Ultra-trace analysis of Hg in alkaline lavas and regolith from James Ross Island. Antarct Sci 27:281–290. doi:10.1017/S0954102014000819

    Article  Google Scholar 

  • Crame JA, Pirrie D, Riding JB, Thomson MRA (1991) Campanian Maastrichtian (Cretaceous) stratigraphy of the James-Ross-Island area, Antarctica. J Geol Soc Lond 148:1125–1140. doi:10.1144/gsjgs.148.6.1125

    Article  Google Scholar 

  • Czech Geological Survey (2009) James Ross Island—northern part. Topographic map 1: 25,000. CGS, Prague

    Google Scholar 

  • Davies BJ, Glasser NF, Carrivick JL et al (2013) Landscape evolution and ice-sheet behaviour in a semi-arid polar environment: James Ross Island, NE Antarctic Peninsula. Antarct Palaeoenvironments Earth-Surface Process 381:1–43. doi:10.1144/SP381.1

    Google Scholar 

  • de Moreno JEA, Gerpe MS, Moreno VJ, Vodopivez C (1997) Heavy metals in Antarctic organisms. Polar Biol 17:131–140. doi:10.1007/s003000050115

    Article  Google Scholar 

  • dos Santos IR, Silva-Filho EV, Schaefer C et al (2006) Baseline mercury and zinc concentrations in terrestrial and coastal organisms of Admiralty Bay, Antarctica. Environ Pollut 140:304–311. doi:10.1016/j.envpol.2005.07.007

    Article  CAS  Google Scholar 

  • Engel Z, Nývlt D, Láska K (2012) Ice thickness, areal and volumetric changes of Davies dome and whisky glacier (James Ross Island, Antarctic peninsula) in 1979–2006. J Glaciol 58:904–914. doi:10.3189/2012JoG11J156

    Article  Google Scholar 

  • Gordon JE, Harkness DD (1992) Magnitude and geographic variation of the radiocarbon content in Antarctic marine life: implications for reservoir corrections in radiocarbon dating. Quat Sci Rev 11:697–708. doi:10.1016/0277-3791(92)90078-M

    Article  Google Scholar 

  • Gray JS (2002) Biomagnification in marine systems: the perspective of an ecologist. Mar Pollut Bull 45:46–52. doi:10.1016/S0025-326X(01)00323-X

    Article  CAS  Google Scholar 

  • Habran S, Debier C, Crocker DE et al (2011) Blood dynamics of mercury and selenium in northern elephant seals during the lactation period. Environ Pollut 159:2523–2529. doi:10.1016/j.envpol.2011.06.019

    Article  CAS  Google Scholar 

  • Hrbáček F, Láska K, Engel Z (2015) Effect of snow cover on the active-layer thermal regime—a case study from James Ross Island. Antarctic Peninsula Permafr Periglac Process. doi:10.1002/ppp.1871

    Google Scholar 

  • Ikemoto T, Kunito T, Watanabe I et al (2004) Comparison of trace element accumulation in Baikal seals (Pusa sibirica), Caspian seals (Pusa caspica) and northern fur seals (Callorhinus ursinus). Environ Pollut 127:83–97. doi:10.1016/S0269-7491(03)00251-3

    Article  CAS  Google Scholar 

  • Jakimska A, Konieczka P, Skóra K, Namieśnik J (2011) Bioaccumulation of metals in tissues of marine animals, part I: the role and impact of heavy metals on organisms. Pol J Environ Stud 20:1117–1125

    CAS  Google Scholar 

  • Košler J, Magna T, Mlčoch B et al (2009) Combined Sr, Nd, Pb and Li isotope geochemistry of alkaline lavas from northern James Ross Island (Antarctic Peninsula) and implications for back-arc magma formation. Chem Geol 258:207–218. doi:10.1016/j.chemgeo.2008.10.006

    Article  Google Scholar 

  • Laws RM, Baird A, Bryden MM (2003) Size and growth of the crabeater seal Lobodon carcinophagus (Mammalia: Carnivora). J Zool 259:103–108. doi:10.1017/S0952836902003072

    Article  Google Scholar 

  • Leermakers M, Baeyens W, Quevauviller P, Horvat M (2005) Mercury in environmental samples: speciation, artifacts and validation. Trends Anal Chem 24:383–393. doi:10.1016/j.trac.2004.01.001

    Article  CAS  Google Scholar 

  • Lin Y, Vogt R, Larssen T (2012) Environmental mercury in China: a review. Environ Toxicol Chem 31:2431–2444. doi:10.1002/etc.1980

    Article  CAS  Google Scholar 

  • Lu Z, Cai M, Wang J et al (2012) Baseline values for metals in soils on Fildes Peninsula, King George Island, Antarctica: the extent of anthropogenic pollution. Environ Monit Assess 184:7013–7021. doi:10.1007/s10661-011-2476-x

    Article  CAS  Google Scholar 

  • Ma D, Zhu R, Ding W et al (2013) Ex-situ enzyme activity and bacterial community diversity through soil depth profiles in penguin and seal colonies on Vestfold Hills, East Antarctica. Polar Biol 36:1347–1361. doi:10.1007/s00300-013-1355-z

    Article  Google Scholar 

  • Magos L, Clarkson T (2008) The assessment of the contribution of hair to methyl mercury excretion. Toxicol Lett 182:48–49. doi:10.1016/j.toxlet.2008.08.010

    Article  CAS  Google Scholar 

  • Mão de Ferro A, Mota AM, Canário J (2014) Pathways and speciation of mercury in the environmental compartments of Deception Island, Antarctica. Chemosphere 95:227–233. doi:10.1016/j.chemosphere.2013.08.081

    Article  Google Scholar 

  • Matsumoto G, Chikazawai K, Hanyai T (1983) Distribution and correlation of total organic carbon and mercury in Antarctic dry valley soils, sediments and organisms. Geochem J 17:247–255. doi:10.2343/geochemj.17.241

    Article  Google Scholar 

  • Melis C, Selva N, Teurlings I, Skarpe C, Linnell JD, Andersen R (2007) Soil and vegetation nutrient response to bison carcasses in Białowieża Primeval Forest, Poland. Ecol Res 22:807–813. doi:10.1007/s11284-006-0321-4

    Article  CAS  Google Scholar 

  • Nehyba S, Nývlt D (2015) “Bottomsets” of the lava–fed delta of James Ross Island Volcanic Group, Ulu Peninsula, James Ross Island, Antarctica. Polish Polar Res 36:1–24. doi:10.1515/popore-2015-0002

    Article  Google Scholar 

  • Nelson AE, Smellie JL, Williams M, Moreton S (2008) Age, geographical distribution and taphonomy of an unusual occurrence of mummified crabeater seals on James Ross Island, Antarctic Peninsula. Antarct Sci 20:485–493. doi:10.1017/S095410200800134X

    Google Scholar 

  • Nie Y, Liu X, Sun L, Emslie SD (2012) Effect of penguin and seal excrement on mercury distribution in sediments from the Ross Sea region, East Antarctica. Sci Total Environ 433:132–140. doi:10.1016/j.scitotenv.2012.06.022

    Article  CAS  Google Scholar 

  • Nývlt D, Košler J, Mlčoch B et al (2011) The Mendel Formation: evidence for Late Miocene climatic cyclicity at the northern tip of the Antarctic Peninsula. Palaeogeogr Palaeoclimatol Palaeoecol 299:363–384. doi:10.1016/j.palaeo.2010.11.017

    Article  Google Scholar 

  • Nývlt D, Braucher R, Engel Z, Mlčoch B (2014) Timing of the Northern Prince Gustav Ice Stream retreat and the deglaciation of northern James Ross Island, Antarctic Peninsula during the last glacial–interglacial transition. Quat Res 82:441–449. doi:10.1016/j.yqres.2014.05.003

    Article  Google Scholar 

  • Nývlt D, Fišáková MN, Barták M et al (2016) Death age, seasonality, taphonomy and colonization of seal carcasses from Ulu Peninsula, James Ross Island, Antarctic Peninsula. Antarct Sci 28:3–16. doi:10.1017/S095410201500036X

    Article  Google Scholar 

  • Péwé TL, Rivard NR, Llano GA (1959) Mummified seal carcasses in the McMurdo Sound Region, Antarctica. Science 130:716. doi:10.1126/science.130.3377.716

    Article  Google Scholar 

  • Poggere GC, Melo VF, Francelino MR et al (2016) Characterization of products of the early stages of pedogenesis in ornithogenic soil from Maritime Antarctica. Eur J Soil Sci 67:70–78. doi:10.1111/ejss.12307

    Article  CAS  Google Scholar 

  • Rabassa J, Skvarca P, Bertani L, Mazzoni E (1982) Glacier inventory of James Ross and Vega Islands, Antarctic Peninsula. Ann Glaciol 3:260–264

  • Santos IR, Silva-Filho EV, Schaefer CEGR et al (2005) Heavy metal contamination in coastal sediments and soils near the Brazilian Antarctic Station, King George Island. Mar Pollut Bull 50:185–194. doi:10.1016/j.marpolbul.2004.10.009

    Article  CAS  Google Scholar 

  • Smellie JL (2013) Geological map of James Ross Island 1. James Ross Island Volcanic Group. BAS GEOMAP 2 Ser Sheet 5, Br Ant − Arct Surv Cambridge 110. doi:10.1029/2006GC001450.20

  • Smith TG, Armstrong FAJ (1978) Mercury and selenium in ringed and bearded seal tissues from Arctic Canada. Arctic 31:75–84. doi:10.2307/40508886

    Article  CAS  Google Scholar 

  • Szefer P, Czarnowski W, Pempkowiak J, Holm E (1993) Mercury and major essential elements in seals, penguins, and other representative fauna of the Antarctic. Arch Environ Contam Toxicol 25:422–427

    Article  CAS  Google Scholar 

  • Wagemann R, Trebacz E, Boila G, Lockhart WL (2000) Mercury species in the liver of ringed seals. Sci Total Environ 261:21–32. doi:10.1016/S0048-9697(00)00592-1

    Article  CAS  Google Scholar 

  • Yamamoto Y, Honda K, Hidaka H, Tatsukawa R (1987) Tissue distribution of heavy metals in Weddell seals (Leptonychotes weddellii). Mar Pollut Bull 18:164–169. doi:10.1016/0025-326X(87)90240-2

    Article  CAS  Google Scholar 

  • Yin X, Sun L, Zhu R, Liu X, Ruan D, Wang Y (2007) Mercury-selenium association in antarctic seal hairs and animal excrements over the past 1,500 years. Environ Toxicol Chem 26:381–386. doi:10.1897/06-128.1

    Article  CAS  Google Scholar 

  • Zvěřina O, Coufalík P, Vaculovič T et al (2012) Macro-and microelements in soil profile of the moss-covered area in James Ross Island, Antarctica. Czech Polar Reports 2:1–7. doi:10.5817/CPR2012-1-1

    Article  Google Scholar 

  • Zvěřina O, Láska K, Červenka R et al (2014) Analysis of mercury and other heavy metals accumulated in lichen Usnea Antarctica from James Ross Island, Antarctica. Environ Monit Assess 186:9089–9100. doi:10.1007/s10661-014-4068-z

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the Czech Polar project for use of its facilities (Johann Gregor Mendel Station) and for financial support from the Grant Agency of the Czech Republic, project P503/12/0682. The involvement of Pavel Coufalík was supported by the Institute of Analytical Chemistry of the CAS under the Institutional Research Plan RVO: 68081715. This work was also supported by the Czech Ministry of Education, Youth and Sports (LO1214 and LM2015051).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ondřej Zvěřina.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zvěřina, O., Coufalík, P., Brat, K. et al. Leaching of mercury from seal carcasses into Antarctic soils. Environ Sci Pollut Res 24, 1424–1431 (2017). https://doi.org/10.1007/s11356-016-7879-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7879-3

Keywords

Navigation