Skip to main content

Advertisement

Log in

Lower tier toxicity risk assessment of agriculture pesticides detected on the Río Madre de Dios watershed, Costa Rica

  • Ecotoxicology in Tropical Regions
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Costa Rica is a tropical country with one of the highest biodiversity on Earth. It also has an intensive agriculture, and pesticide runoff from banana and pineapple plantations may cause a high toxicity risk to non-target species in rivers downstream the plantations. We performed a first tier risk assessment of the maximum measured concentrations of 32 pesticides detected over 4 years in the River Madre de Dios (RMD) and its coastal lagoon on the Caribbean coast of Costa Rica. Species sensitivity distributions (SSDs) were plotted in order to derive HC5 values for each pesticide, i.e., hazard concentrations for 5 % of the species, often used as environmental criteria values in other countries. We also carried out toxicity tests for selected pesticides with native Costa Rican species in order to calculate risk coefficients according to national guidelines in Costa Rica. The concentrations of herbicides diuron and ametryn and insecticides carbofuran, diazinon, and ethoprophos exceeded either the HC5 value or the lower limit of its 90 % confidence interval suggesting toxic risks above accepted levels. Risk coefficients of diuron and carbofuran derived using local guidelines indicate toxicity risks as well. The assessed fungicides did not present acute toxic risks according to our analysis. Overall, these results show a possible toxicity of detected pesticides to aquatic organisms and provide a comparison of Costa Rican national guidelines with more refined methods for risk assessment based on SSDs. Further higher tier risk assessments of pesticides in this watershed are also necessary in order to consider pesticide water concentrations over time, toxicity from pesticide mixtures, and eventual effects on ecosystem functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Arias-Andrés M, Mena-Torres F, Vargas S, Solano K (2014) Sensitivity of Costa Rica’s native cladoceran Daphnia Ambigua and Simocephalus Serrulatus to the organophosphate pesticide ethoprophos. J Environ Biol 35(1):67–71

    Google Scholar 

  • Boeglin N (2010) Nivel de cumplimiento de decisiones judiciales en materia ambiental relativas a la protección del recurso hídrico. Lecture prepared for Programa Estado de la Nación, 2010. Decimosexto Informe Estado de la Nación en Desarrollo Humano Sostenible. San José, Programa Estado de la Nación

  • Booij P, Sjollema SB, van der Geest HG et al (2015) Toxic pressure of herbicides on microalgae in Dutch estuarine and coastal waters. J Sea Res. doi:10.1016/j.seares.2015.05.001

    Article  Google Scholar 

  • Bravo V, Rodríguez T, van Wendel de Joode B et al (2011) Monitoring pesticide use and associated health hazards in central America. Int J Occup Environ Health. doi:10.1179/107735211799041896

    Article  Google Scholar 

  • Carriquiriborde P, Mirabella P, Waichman A, Solomon K, Van den Brink PJ, Maund S (2014) Aquatic risk assessment of pesticides in Latin America: current status and future needs. Integr Environ Assess Manag 10:539–542

    Article  CAS  Google Scholar 

  • Castillo LE, Ruepert C, Solis E (2000) Pesticide residues in the aquatic environment of banana plantation areas in the North Atlantic zone of Costa Rica. Environ Toxicol Chem 19:1942–1950

    Article  CAS  Google Scholar 

  • CGR (2013) Report on the effectiveness of the State to ensure the quality of water in its different uses. Controloria General de la Republica, San José, Costa Rica. https://cgrfiles.cgr.go.cr/publico/jaguar/sad_docs/2013/DFOE-AE-IF-01-2013.pdf (in Spanish)

  • CICA-CIMAR (2011) Centro de Investigación en Contaminación Ambiental, Centro de Investigaciones Marinas y Limnología. 2011. Informe técnico Proyecto Monitoreo de residuos de plaguicidas. Technical report CICA/CIMAR Universidad de Costa Rica.

  • Daam MA, Van den Brink PJ (2010) Implications of differences between temperate and tropical freshwater ecosystems for the ecological risk assessment of pesticides. Ecotoxicology. doi:10.1007/s10646-009-0402-6

    Article  Google Scholar 

  • de la Cruz E, Bravo-Durán V, Ramírez F, Castillo LE (2014) Environmental hazards associated with pesticide import into Costa Rica, 1977-2009. J Environ Biol 35(1):43–55

    Google Scholar 

  • De Zwart D (2002) Observed regularities in species sensitivity distributions for aquatic species. In: Posthuma L, Suter II GW, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis Publishers, FL, USA, pp. 133–154

    Google Scholar 

  • Diepens NJ, Pfennig S, Van den Brink PJ, Gunnarsson JS, Ruepert C, Castillo LE (2014) Effect of pesticides used in banana and pineapple plantations on aquatic ecosystems in Costa Rica. J Environ Biol 35(1):73–84

    Google Scholar 

  • Dijksterhuis J, van Doorn T, Samson R, Postma J (2011) Effects of seven fungicides on non-target aquatic fungi. Water Air Soil Pollut 222(1–4):421–425

    Article  CAS  Google Scholar 

  • Dimitrov MR, Kosol S, Smidt H, Buijse L, Van den Brink PJ, Van Wijngaarden RPA, Brock TCM, Maltby L (2014) Assessing effects of the fungicide tebuconazole to heterotrophic microbes in aquatic microcosms. Sci Total Environ 490:1002–1011

    Article  CAS  Google Scholar 

  • Echeverría-Sáenz S, Mena F, Pinnock M, Ruepert C et al (2012) Environmental hazards of pesticides from pineapple crop production in the Río Jiménez watershed (Caribbean coast, Costa Rica). Sci Total Env 440:106–114

    Article  CAS  Google Scholar 

  • Echeverría-Sáenz S, Mena F, Arias-Andrés M, Vargas S, Ruepert C, van den Brink PJ, Castillo LE, Gunnarsson JS. (2016) In situ toxicity and ecological risk assessment of agro-pesticide runoff in the Madre de Dios River in Costa Rica. Environ Sci Pollut Res Give DOI nr.

  • Environment Canada (2007) EPS 1/RM/25. Biological test method: test for measuring the inhibition of growth using the freshwater macrophyte, ‘Lemna minor’. 2nd Ed. Environmental Technology Centre, Environment Canada. 141 pp.

  • European Commission (2002) Guidance document on aquatic ecotoxicology in the context of the Directive 91/414/EEC. SANCO 3268/2001 rev.4 final. Brussels. Available from http://ec.europa.eu/food/fs/ph_ps/pro/wrkdoc/wrkdoc10_en.pdf.

  • European Union. Directive 2013/39/EU of the European Parliament and of the Council of 12 August 2013 amending Directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy Text with EEA relevance

  • INDER (2016) Characterization of the Limón-Matina Territory. https://www.inder.go.cr/territorios_inder/region_huetar_caribe/Accessed 01 September 2016 (in Spanish)

  • King J, Alexander F, Brodie J (2013) Regulation of pesticides in Australia: the great barrier reef as a case study for evaluating effectiveness. Agric Ecosyst Environ. doi:10.1016/j.agee.2012.07.001

    Article  Google Scholar 

  • MAG-S-MINAE-MEIC (2007) Decree no. 33495 Reglamento sobre Registro, Uso y Control de Plaguicidas Sintéticos Formulados, Ingrediente Activo Grado Técnico, Coadyuvantes y Sustancias Afines de Uso Agrícola Gaceta oficial de Costa Rica. Published the 10th of January of 2007.

  • MAG-S-MTSS-MINAE (2014) Decreto N° 38713 Prohibición del registro, importación, exportación, fabricación, formulación, almacenamiento, distribución, transporte, reempaque, reenvase, manipulación, venta, mezcla, uso de ingredientes grado técnico y plaguicidas que contengan carbofurán. Gaceta oficial de Costa Rica. Published the 15th of May of 2014.

  • Maltby L, Blake N, Brock TCM, Van den Brink PJ (2005) Insecticide species sensitivity distributions: the importance of test species selection and relevance to aquatic ecosystems. Env Toxicol Chem 24:379–388

    Article  CAS  Google Scholar 

  • Maltby L, Blake N, Brock TCM, Van den Brink PJ (2009) Fungicide risk assessment for aquatic ecosystems: importance of interspecific variation, toxic mode of action and exposure regime. Environ Sci Technol 43:7556–7563

    Article  CAS  Google Scholar 

  • Mena F, Pfennig S, Arias-Andrés M, Márquez-Couturier G, Sevilla A, Protti M (2012) Acute toxicity and cholinesterase inhibition of the nematicide ethoprophos in larvae of gar Atractosteus Tropicus (Semionotiformes: Lepisosteidae). Int J Trop Biol 60:361–368

    Google Scholar 

  • MINAET (2012) Resolution N° R-635-2011- MINAET Procedimiento general y lineamientos a seguir por parte del MINAET para la Evaluación de Riesgo Ambiental (ERA) para el Registro de los Plaguicidas Sintéticos Formulados. Gaceta oficial de Costa Rica. Published the 15th of February of 2012

  • OECD (2004) Guidelines for the testing of chemicals, Section 2, test no. 202: Daphnia sp. acute immobilisation test. doi: 10.1787/9789264069947-en

  • Posthuma L, Suter WG II, Traas TP (2002) Chapter 1. General introduction to species sensitivity distributions. In: Posthuma L, Suter II GW, Traas TP (eds) Species sensitivity distributions in ecotoxicology. Lewis Publishers, FL, USA, pp. 3–9

    Google Scholar 

  • Rämö R, van den Brink PJ, Ruepert C, Castillo LE, Gunnarsson JS (2016) Environmental risk assessment of pesticides in the River Madre de Dios, Costa Rica using PERPEST, SSD, and msPAF models. Environ Sci Pollut Res. doi:10.1007/s11356-016-7375-9 (this special issue)

    Article  Google Scholar 

  • Rico A, Van den Brink PJ (2014) Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in Asia. Sci Total Environ. doi:10.1016/j.scitotenv.2013.08.063

    Article  Google Scholar 

  • Schreinemachers P, Tipraqsa P (2012) Agricultural pesticides and land use intensification in high, middle and low income countries. Food Policy. doi:10.1016/j.foodpol.2012.06.003

    Article  Google Scholar 

  • Shahidul Islam M, Tanaka M (2004) Impacts of pollution on coastal and marine ecosystems including coastal and marine fisheries and approach for management: a review and synthesis. Mar Pollut Bull 48(7–8):624–649

    Article  CAS  Google Scholar 

  • U.S. Environmental Protection Agency (2016) ECOTOX user guide: ECOTOXicology database system. Version 4.0. Available: http://www.epa.gov/ecotox/

  • Van den Brink PJ, Blake N, Brock TCM, Maltby L (2006) Predictive value of species sensitivity distributions for effects of herbicides in freshwater ecosystems. Journal of Human and Ecological Risk Assessment 12:645–674

    Article  CAS  Google Scholar 

  • Van Vlaardingen P, Traas T, Wintersen A, Aldenberg T (2004) A program to calculate hazardous concentrations and fraction affected, based on normally distributed toxicity data. 68. Bilthoven, the Netherlands: National Institute for Public Health and the Environment (RIVM)

  • Waterhouse J, Brodie J, Lewis S, Mitchell A (2012) Quantifying the sources of pollutants in the great barrier reef catchments and the relative risk to reef ecosystems. Mar Pollut Bull. doi:10.1016/j.marpolbul.2011.09.031

    Article  Google Scholar 

  • Wightwick AM, Bui AD, Zhang P et al (2012) Environmental fate of fungicides in surface waters of a horticultural-production catchment in southeastern Australia. Arch Environ Contam Toxicol. doi:10.1007/s00244-011-9710-y

    Article  Google Scholar 

  • Xin Z, Wenchao Z, Zhenguang Y et al (2015) Species sensitivity analysis of heavy metals to freshwater organisms. Ecotoxicology. doi:10.1007/s10646-015-1500-2

    Article  Google Scholar 

  • Yáñez-Arancibia A, Day JW, Sánchez-Gil P et al (2014) The basis for restoration and management of a tropical coastal lagoon. Pacific coast of Mexico Ecological Engineering. doi:10.1016/j.ecoleng.2013.03.007

    Article  Google Scholar 

Download references

Acknowledgments

The authors will like to thank Geanina Moraga for making the map of the RMD watershed. We also wish to acknowledge the RIVM, the National Institute for Public Health, and the Environment in the Netherlands for letting us use the ETX database and software. Funding was provided from Universidad Nacional (UNA), Costa Rica, by the Swedish Research Council FORMAS (grant no. 2007–282) and by Stockholm University, Sweden.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Arias-Andrés.

Additional information

Responsible editor: Henner Hollert

Electronic supplementary material

ESM 1

(DOCX 27 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arias-Andrés, M., Rämö, R., Mena Torres, F. et al. Lower tier toxicity risk assessment of agriculture pesticides detected on the Río Madre de Dios watershed, Costa Rica. Environ Sci Pollut Res 25, 13312–13321 (2018). https://doi.org/10.1007/s11356-016-7875-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7875-7

Keywords

Navigation