Skip to main content

The effects of ocean acidification and a carbon dioxide capture and storage leak on the early life stages of the marine mussel Perna perna (Linneaus, 1758) and metal bioavailability

Abstract

The study assesses the effects of carbon dioxide capture and storage (CCS) leaks and ocean acidification (OA) on the metal bioavailability and reproduction of the mytilid Perna perna. In laboratory-scale experiments, CCS leakage scenarios (pH 7.0, 6.5, 6.0) and one OA (pH 7.6) scenario were tested using metal-contaminated sediment elutriates and seawater from Santos Bay. The OA treatment did not have an effect on fertilisation, while significant effects were observed in larval-development bioassays where only 16 to 27 % of larva developed normally. In treatments that simulated CO2 leaks, when compared with control, fertilisation success gradually decreased and no larva developed to the D-shaped stage. A fall in pH increased the bioavailability of metals to marine mussels. Larva shell size was significantly affected by both elutriates when compared with seawater; moreover, a significant difference occurred at pH 6.5 between elutriates in the fertilisation bioassay.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Abessa DMS, Sousa ECPM, Rachid BRF, Mastroti RR (2001) Sediment toxicity in Santos estuary, SP-Brazil: preliminary results. Ecotoxicol Environ Restor 4(1):6–9

    Google Scholar 

  • Allen H (1993) The significance of trace metal speciation for water, sediment and soil quality criteria and standards. Sci Total Environ 134:23–45

    Article  Google Scholar 

  • Andre C, Rosenberg R (1991) Adult-larval interactions in the suspension-feeding bivalves Cerastoderma edule and Mya arenaria. Mar Ecol Prog Ser 71:227–234

    Article  Google Scholar 

  • Anil AC, Desai D, Khandeparker L (2001) Larval development and metamorphosis in Balanus amphitrite Darwin (Cirripedia; Thoracica): significance of food concentration, temperature and nucleic acids. J Exp Mar Biol Ecol 263:125–141

    Article  Google Scholar 

  • ASTM - American Society of Testing and Materials. E 724-89 (1992) Standard guide for conducting static toxicity tests starting with embryos of four species of saltwater bivalve molluscs. In: Annual book of ASTM standards: water and environmental technology. Philadelphia, 11: 377–394

  • Baes CF, Mesmer RE (1976) The hydrolysis of cations. John Wiley & Sons Inc, pp 512

  • Barros P, Sobral P, Range P, Chícharo L, Matias D (2013) Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. J Exp Mar Bio Ecol 440:200–206. doi:10.1016/j.jembe.2012.12.014

    Article  Google Scholar 

  • Basallote MD, De Orte MR, DelValls TA, Riba I (2014) Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test. Environ Sci Technol 48:8864–8872. doi:10.1021/es5015373

    CAS  Article  Google Scholar 

  • Basallote MD, Rodríguez-Romero A, De Orte MR, DelValls TA, Riba I (2015) Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves. Aquat Toxicol 166:63–71. doi:10.1016/j.aquatox.2015.07.004

    CAS  Article  Google Scholar 

  • Bechmann RK, Taban IC, Westerlund S, Godal BF, Arnberg M, Vingen S, Ingvarsdottir A, Baussant T (2011) Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). J Toxicol Environ Health A 74(7–9):424–438. doi:10.1080/15287394.2011.550460

    CAS  Article  Google Scholar 

  • Beckerman A, Benton TG, Ranta E, Kaitala V, Lundberg P (2002) Population dynamic consequences of delayed life-history effects. Trends Ecol Evol 17:263–269

    Article  Google Scholar 

  • Beesley A, Lowe DM, Pascoe CK, Widdicombe S (2008) Effects of CO2-induced seawater acidification on the health of Mytilus edulis. Clim Res 37:215–225. doi:10.3354/cr00765

    Article  Google Scholar 

  • Beiras R, His E (1994) Effects of dissolved mercury on embryogenesis, survival, growth and metamorphosis of Crassostrea gigas oyster larvae. Mar Ecol Prog Ser 113:95–104. doi:10.3354/meps113095

    Article  Google Scholar 

  • Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419:95–108

    CAS  Article  Google Scholar 

  • Bibby R, Widdicombe S, Parry H, Spicer J, Pipe R (2008) Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat Biol 2:67–74. doi:10.3354/ab00037

    Article  Google Scholar 

  • Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Annu Rev 49:1–42

    Google Scholar 

  • Byrne RH, Kump LR, Cantrell KJ (1988) The influence of temperature and pH on trace metal speciation in seawater. Mar Chem 25:163–181. doi:10.1016/0304-4203(88)90062-X

    CAS  Article  Google Scholar 

  • Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:1–12. doi:10.1029/2004JC002671

    Article  Google Scholar 

  • Câmara GAB, Andrade JCS, Ferreira LEA, Rocha PS (2011) Regulatory framework for geological storage of CO2 in Brazil—analyses and proposal. Int J Greenh Gas Control 5(4:966–974

    Article  Google Scholar 

  • Cantrell KJ, Byrne RH (1987) Rare earth complexation by carbonate and oxalate ions. Geochim Cosmochim Ac 51(3):597–605

    CAS  Article  Google Scholar 

  • Cesar A, Pereira CDS, Santos AR, Abessa DMS, Fernandez N, Choueri RB, DelValls TA (2006) Ecotoxicological assessment of sediments from the Santos and São Vicente estuarine system—Brazil. Braz J Ocean 54:55–63

    Article  Google Scholar 

  • CETESB - Environmental Control Agency of the São Paulo State (1981) Heavy metals in the Santos Bay and in the Santos and São Vicente Estuaries. Tecnical Report, São Paulo, pp 231 (in Portuguese)

  • CETESB - Environmental Control Agency of the São Paulo State (2001) Santos and São Vicente Sistema Estuarine System. Tecnical Report. São Paulo, pp 178 (in Portuguese)

  • De Orte MR, Lombardi AT, Sarmiento AM, Basallote MD, Rodriguez-Romero A, Riba I, DelValls TA (2014a) Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison. Mar Environ Res 96:136–144. doi:10.1016/j.marenvres.2013.10.003

    CAS  Article  Google Scholar 

  • De Orte MR, Sarmiento AM, Basallote MD, Rodríguez-Romero A, Riba I, DelValls TA (2014b) Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations. Sci Total Environ 470-471:356–363. doi:10.1016/j.scitotenv.2013.09.095

    Article  Google Scholar 

  • De Orte MR, Sarmiento AM, DelValls TA, Riba I (2014c) Simulation of the potential effects of CO2 leakage from carbon capture and storage activities on the mobilization and speciation of metals. Mar Pollut Bull 86:59–67

    CAS  Article  Google Scholar 

  • Del Cielo CC, Malgarin J, Resgalla JR (2013) Review of chronic and acute bioassays with embryos of marine mussel Perna perna (L.). Ecotoxicol Environ Contam 8(2):37–43. doi:10.5132/eec.2013.02.006 in Portuguese

    Google Scholar 

  • Dickson AG (1990) Standard potential of the reaction: AgCl(s) þ 1/2 H2(g) ¼ Ag(s) þ HCl(aq), and the standard acidity constant of the ion HSO_4 in synthetic seawater from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127

    CAS  Article  Google Scholar 

  • Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743

    CAS  Article  Google Scholar 

  • Dorey N, Lançon P, Thorndyke M, Dupont S (2013) Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob Chang Biol 19(11):3355–3367. doi:10.1111/gcb.12276

    Google Scholar 

  • Duarte C, Navarro JM, Acuña K, Torres R, Manríquez PH, Lardies MA, Vargas CA, Lagos NA, Aguilera V (2014) Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. J Sea Res 85:308–314. doi:10.1016/j.seares.2013.06.002

    Article  Google Scholar 

  • Ellis RP, Widdicombe S, Parry H, Hutchinson TH, Spicer JI (2015) Pathogenic challenge reveals immune trade-off in mussels exposed to reduced seawater pH and increased temperature. J Exp Mar Bio Ecol 462:83–89. doi:10.1016/j.jembe.2014.10.015

    CAS  Article  Google Scholar 

  • Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2009) Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss 6:2267–2284

    Article  Google Scholar 

  • Frye E, Bao C, Li L, Blumsack S (2012) Environmental controls of cadmium desorption during CO2 leakage. Environ Sci Technol 46:4388–4395. doi:10.1021/es3005199

    CAS  Article  Google Scholar 

  • Gazeau F, Gattuso JP, Dawber C, Pronker E, Peene F, Peene J, Heip CHR, Middelburg JJ (2010) Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7:2051–2060. doi:10.5194/bg-7-2051-2010

    CAS  Article  Google Scholar 

  • Geffard A, Geffard O, Amiard JC, His E, Amiard-Triquet C (2007) Bioaccumulation of metals in sediment elutriates and their effects on growth, condition index, and metallothionein contents in oyster larvae. Arch Environ Contam Toxicol 53:57–65. doi:10.1007/s00244-006-0046-y

    CAS  Article  Google Scholar 

  • Gobler CJ, Talmage SC (2014) Physiological response and resilience of early life-stage eastern oysters (Crassostrea virginica) to past, present and future ocean acidification. Conserv Physiol 2. doi:10.1093/conphys/cou004

  • Gonzalez-Davila M, Santana-Casiano J, Perez-Pena M, Millero FJ (1995) Binding of Cu(II) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environ Sci Technol 29:289–301

    CAS  Article  Google Scholar 

  • Gosselin LA, Qian PY (1997) Juvenile mortality in benthic marine invertebrates. Mar Ecol Prog Ser 146:265–282

    Article  Google Scholar 

  • Gutierrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Molluscs as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90

    Article  Google Scholar 

  • Gutknecht J, Bisson MA, Tosteson FC (1977) Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol 69:779–794

    CAS  Article  Google Scholar 

  • Hammer KM, Kristiansen E, Zachariassen KE (2011) Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia: Limidae). Mar Environ Res 72:135–142. doi:10.1016/j.marenvres.2011.07.002

    CAS  Article  Google Scholar 

  • Haugan PM, Drange H (1996) Effects of CO2 on the ocean environment. Energy Convers Manag 37:1019–1022

    CAS  Article  Google Scholar 

  • Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosci Discuss 6:4573–4586. doi:10.5194/bgd-6-4573-2009

    Article  Google Scholar 

  • Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:651–652. doi:10.1016/j.cub.2008.06.015

    Article  Google Scholar 

  • Hawkins DG (2004) No exit: thinking about leakage from geologic carbon storage sites. Energy 29:1571–1578

    CAS  Article  Google Scholar 

  • Hayakaze E, Tanabe K (1999) Early larval shell development in mytilid bivalve Mytilus galloprovincialis Japanese. J Malacol 58:119–127

    Google Scholar 

  • Hicks DW, Tunnell JW (1995) Ecological notes and patterns of dispersal in the recently introduced mussel, Perna-perna (Linne, 1758) in the Gulf-of-Mexico. Am Malacol Bull 11(2):203–206

    Google Scholar 

  • Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147. doi:10.1146/annurev.ecolsys.110308.120227

    Article  Google Scholar 

  • Hortellani MA, Sarkis JES, Abessa DMS, Sousa ECPM (2008) Assessment of metallic element contamination in sediments from the Santos—São Vicente estuarine system. Quim Nov. 31:10–19. doi:10.1590/S0100-40422008000100003

  • International Energy Agency (IEA ) (2010) Energy Technology Perspectives 2010: Scenarios & Strategies to 2050, Strategies

  • Intergovernmental Panel on Climate Change (IPCC) (2014) Summary for Policymakers, In: Edenhofer OR, Pichs-Madruga Y, Sokona E, Farahani S, Kadner K, Seyboth A, Adler I et al. (eds) Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY USA

  • Joos F, Frolicher T, Steinacher M, Plattner GK (2011) Impact of climate change mitigation on ocean acidification projections. In: Gattuso JP, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp. 272–290

    Google Scholar 

  • Klok C, Wijsman JWM, Kaag K, Foekema E (2014) Effects of CO2 enrichment on cockle shell growth interpreted with a dynamic energy budget model. J Sea Res 94:111–116. doi:10.1016/j.seares.2014.01.011

    Article  Google Scholar 

  • Kniprath E (1981) Ontogeny of the molluscan Shell field: a review. Zool Scr 10:61–79

    Article  Google Scholar 

  • Ko GWK, Dineshram R, Campanati C, Chan VBS, Havenhand J, Thiyagarajan V (2014) Interactive effects of ocean acidification, elevated temperature and reduced salinity on early-life stages of the pacific oyster. Environ Sci Technol 48(17):10079–10088. doi:10.1021/es501611u

    CAS  Article  Google Scholar 

  • Kobayashi N, Okamura H (2005) Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents. Chemosphere 61:1198–1203. doi:10.1016/j.chemosphere.2005.02.071

    CAS  Article  Google Scholar 

  • Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi:10.3354/meps07802

    CAS  Article  Google Scholar 

  • Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98. doi:10.3354/ab00009

    CAS  Article  Google Scholar 

  • Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233. doi:10.3354/ab00109

    Article  Google Scholar 

  • Liu W, He M (2012) Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chin J Oceanol Limn 30:206–211

    CAS  Article  Google Scholar 

  • Lombardi AT, Vieira AAH, Sartori LA (2002) Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). J Phycol 38:332–337

    CAS  Article  Google Scholar 

  • London Convention (2006) Risk assessment and management framework for CO2 sequestration in sub-seabed geological formations. London Convention on the prevention of Marine Pollution by Dumping of Wastes and Other Matter 1972 and 1996 Protocol Thereto

  • Marques HLA (1998) Commercial production of mussels. Nobel, São Paulo, p. 111 in Portuguese

    Google Scholar 

  • Martin M, Osborn KE, Billig P, Glickstein N (1981) Toxicities of ten metals to Crassostrea gigas and Mytilus edulis embryos and Cancer magister larvae. Mar Pollut Bull 12:305–308. doi:10.1016/0025-326X(81)90081-3

    CAS  Article  Google Scholar 

  • McConville K, Halsband C, Fileman ES, Somerfield PJ, Findlay HS, Spicer JI (2013) Effects of elevated CO2 on the reproduction of two calanoid copepods. Mar Pollut Bull 73:428–434

    CAS  Article  Google Scholar 

  • Mehrbach C, Culberson C, Hawley J, Pytkowicz R (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    CAS  Article  Google Scholar 

  • Millero FJ (1992) Stability constants for the formation of rare earth inorganic complexes of a function of ionic strength. Geochim Cosmochim Ac 56(8):3123–3132

    CAS  Article  Google Scholar 

  • Millero FJ (2001) Speciation of metals in natural waters. Geochem Trans 2(8):56–64. doi:10.1039/b104809k

    Google Scholar 

  • Millero FJ, Hawke DJ (1992) Ionic interactions of divalent metals in natural waters. Mar Chem 40:19–48

    CAS  Article  Google Scholar 

  • Millero FJ, Yao W, Aicher J (1995) The speciation of iron (II) and (III) in natural waters. Mar Chem 50:21–39

    CAS  Article  Google Scholar 

  • Millero FJ, Graham T, Huang F, Bustos H, Pierrot D (2006) Dissociation constants for carbonic acid in seawater as a function of temperature and salinity. Mar Chem 100:80–94

    CAS  Article  Google Scholar 

  • Millero FJ, Woosley R, DiTrolio B, Waters J (2009) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22:72–85. doi:10.5670/oceanog.2009.98

    Article  Google Scholar 

  • Nadella SR, Fitzpatrick JL, Franklin N, Bucking C, Smith S, Wood CM (2009) Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel (Mytilus trossolus) and the protective effect of dissolved organic carbon. Comp Biochem Physiol- C Toxicol Pharmacol 149:340–348. doi:10.1016/j.cbpc.2008.09.001

    Article  Google Scholar 

  • Navarro JM, Torres R, Acuña K, Duarte C, Manriquez PH, Lardies M, Lagos NA, Vargas C, Aguilera V (2013) Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90:1242–1248

    CAS  Article  Google Scholar 

  • Nogueira PFM, Melao MGG, Lombardi AT, Vieira AAH (2005) The effects of Anabaena spiroides (Cyanophyceae) exopolysaccha- ride on copper toxicity to Simocephalus serrulatus (Cladocera, Daphnidae). Freshw Biol 50:1560–1567

    CAS  Article  Google Scholar 

  • Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic Ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686

    CAS  Article  Google Scholar 

  • OSPAR Convention (2007) Guidelines for risk assessment and management of storage of carbon dioxide streams in sub-seabed geological formations, OSPAR Convention for the Protection of the Marine Environment of the North-East Atlantic

  • Palmer AR (1992) Calcification in marine mollusks: how costly is it? Proc Natl Acad Sci U S A 89:1379–1382

    CAS  Article  Google Scholar 

  • Pan TCF, Applebaum SL, Manahan DT (2015) Experimental Ocean acidification alters the allocation of metabolic energy. PNAS 112(15):4696–4701

    CAS  Article  Google Scholar 

  • Parker LM, Ross PM, O’Connor WA (2010) Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol 157:2435–2452. doi:10.1007/s00227-010-1508-3

    Article  Google Scholar 

  • Pavičić J, Škreblin M, Kregar I, Tušek-Žnidarič M, Stegnart P (1994) Embryo-larval tolerance of Mytilus galloprovincialis, exposed to the elevated sea water metal concentrations—I. Toxic effects of Cd, Zn and Hg in relation to the metallothionein level. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 107(2):249–257. doi:10.1016/1367-8280(94)90048-5

    Article  Google Scholar 

  • Pechenik JA (2006) Larval experience and latent effects-metamorphosis is not a new beginning. Integr Comp Biol 46:323–333

    Article  Google Scholar 

  • Phillips NE (2002) Effects of nutrition-mediated larval condition on juvenile performance in a marine mussel. Ecology 83:2562–2574

    Article  Google Scholar 

  • Phillips NE (2004) Variable timing of larval food has consequences for early juvenile performance in a marine mussel. Ecology 85:2341–2346

    Article  Google Scholar 

  • Pierrot D, Lewis E, Wallace DWR (2006) MS Excel Program Developed for CO2 System Calculation. ORNL/CDIAC 105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tennessee

  • Poli CR, Littlepage J (1998) Development of the aquaculture of mollusks in the Santa Catarina state. Proceedings of the I South American Congress of Aquaculture. Recife, PE, Brazil. 45–49 (in Portuguese)

  • Range P, Piló D, Ben-Hamadou R, Chícharo M, Matias D, Joaquim S, Oliveira P, Chícharo L (2012) Seawater acidification by CO2 in a coastal lagoon environment: effects on life history traits of juvenile mussels Mytilus galloprovincialis. J Exp Mar Bio Ecol 424-425:89–98. doi:10.1016/j.jembe.2012.05.010

    CAS  Article  Google Scholar 

  • Rensing C, Maier RM (2003) Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol Environ Saf 56:140

    CAS  Article  Google Scholar 

  • Riba I, García-Luque E, Blasco J, DelValls TA (2003) Bioavailability of heavy metals bound to estuarine sediments as a function of pH and salinity values. Chem Spec Bioavail 15:101–114

    CAS  Article  Google Scholar 

  • Riba I, Kalman J, Vale C, Blasco J (2010) Influence of sediment acidification on the bioaccumulation of metals in Ruditapes philippinarum. Environ Sci Pollut 17:1519–1528

    Article  Google Scholar 

  • Rios E (1984) Sea shells of Brazil. 2nd ed. Editora da FURG, Rio Grande, p. 368

    Google Scholar 

  • Roberts DA, Birchenough SNR, Lewis C, Sanders MB, Bolam T, Sheahan D (2013) Ocean acidification increases the toxicity of contaminated sediments. Glob Chang Biol 19:340–351

    Article  Google Scholar 

  • Rodríguez-Romero A, Basallote MD, De Orte MR, DelValls TA, Riba I, Blasco J (2014) Simulation of CO2 leakages during injection and storage in sub-seabed geological formations: metal mobilization and biota effects. Environ Int 68:105–117. doi:10.1016/j.envint.2014.03.008

  • Ross PM, Parker L, O’Connor WA, Bailey EA (2011) The impact of ocean acidification on reproduction, early development and settlement of marine organisms. Water 3:1005–1030. doi:10.3390/w3041005

    CAS  Article  Google Scholar 

  • Schreiber DR, Gordon AS, Millero FJ (1985) The toxicity of copper to the marine bacterium Vibrio alginolyticus. Can J Microbiol 31:83–87

    CAS  Article  Google Scholar 

  • Seed R, Suchanek TH (1992) Population and community ecology of Mytilus. In: Gosling E (ed) The mussel Mytilus: ecology, physiology, genetics and culture developments in aquaculture and fisheries science, 25. Elsevier, Amsterdam ISBN 0-444-88752-0. XIII: 87-169

    Google Scholar 

  • Siddal (1980) A clarification of the genus Perna (Mytilidade). Bull Mar Sci 30:858–870

    Google Scholar 

  • Silva IX, Morares RP, dos Santos RP, Pompeia SL, Martins SE (1991) Evaluation of the state of ecosystem degradation in the Baixada Santista (Sao Paulo state) Relatório Técnico CETESB. São Paulo. p 45 (in Portuguese)

  • Styan CA (1998) Polyspermy, egg size, and the fertilization kinetics of free-spawning marine invertebrates. Am Nat 152:290–297

    CAS  Google Scholar 

  • Suchanek TH (1992) Extreme biodiversity in the marine environment: mussel bed communities of Mytilus californianus. Northwest Environ J 8(1):150–152

    Google Scholar 

  • Talmage SC, Gobler CJ (2009) The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and eastern oysters (Crassostrea virginica). Limnol Oceanogr 54:2072–2080. doi:10.4319/lo.2009.54.6.2072

    Article  Google Scholar 

  • Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45

    CAS  Article  Google Scholar 

  • Torres RJ, Cesar A, Pastor V, Pereira CDS, Choueri RB, Cortez FS, Morais RD, Abessa DMS, do Nascimento MRL, Morais CR, Fadini OS, DelValls Casillas TA, Mozeto A (2014) A critical comparison of different approaches to sediment-quality assessments in the Santos estuarine system in Brazil. Arch Environ Contam Toxicol 68:132–147. doi:10.1007/s00244-014-0099-2

    Article  Google Scholar 

  • Turley C, Nightingale P, Riley N, Widdicombe S, Joint I, Gallienne C, Lowe D, Goldson L, Beaumont N, Mariotte P, Groom S, Smerdon G, Rees A, Blackford J, Owens N, West J, Land P, Woodason E (2004) Literature review: environmental impacts of a gradual or catastrophic release of CO2 into the marine environment following carbon dioxide capture. The UK Department for Environment. Food and Rural affairs, London

    Google Scholar 

  • US Environmental Protection Agency (USEPA) (1991) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. EPA/600/4-91/003-U.S. Environmental Protection Agency, Cincinati, pp. 579

  • US Environmental Protection Agency (USEPA) (1993) Office of Water Policy and Technical Guidance on Interpretation and Implementation of Aquatic Life Metals Criteria, United States Environmental Protection Agency, Washington, DC. 20460

  • US Environmental Protection Agency (USEPA) (1998) Evaluation of dredged material proposed for discharge in waters of the U.S.—testing manual, US Army Corps of Engineers. United State Environmental Protection Agency, Office of Water, EPA-823-B-98-004

  • US Environmental Protection Agency (USEPA) (2001) Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. USEPA, Office of Water, EPA – 823-B-01- 002

  • Waldbusser GG, Bergschneider H, Green MA (2010) Size-dependent pH effect on calcification in post-larval hard clam Mercenaria sp. Mar Ecol Prog Ser 417:171–182

    Article  Google Scholar 

  • Waller TR (1981) Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linné. Smithson. Contrib to Zool 328:1–70

    Article  Google Scholar 

  • Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491. doi:10.1002/jez.90004

    CAS  Article  Google Scholar 

  • Weydmann A, Søreide JE, Kwasniewski S, Widdicombe S (2012) Influence of CO2-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. J Exp Mar Bio Ecol 428:39–42. doi:10.1016/j.jembe.2012.06.002

    CAS  Article  Google Scholar 

  • Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc Biol Sci 275:1767–1773

    Article  Google Scholar 

  • Yamada Y, Ikeda T (1999) Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biology and Ecology 46(1):62–67

    Google Scholar 

  • Zardus JD, Martel AL (2002) Phylum Mollusca: Bivalvia. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic Press, San Diego, pp. 289–325

    Google Scholar 

  • Zaroni LP, Abessa DMS, Lotufo GR, Sousa ECPM, Pinto Y (2005) Toxicity testing with embryos of marine mussels: protocol standardization for Perna perna (Linnaeus, 1758). Bull Environ Contam Toxicol 74:793–800. doi:10.1007/s00128-005-0651-x

    CAS  Article  Google Scholar 

Web references

Download references

Acknowledgments

The first author thanks the Erasmus Mundus Programme for the Master Fellowship. M.R. De Orte thanks the São Paulo Research Foundation (FAPESP) for the postdoctoral fellowship granted under process 2014/22273-1. A. Cesar thanks the Brazilian National Council for Scientific and Technological Development (CNPq PQ no. 305869/2013-2) for the productivity fellowships awarded. A. DelValls thanks Coordination for the Improvement of Higher Education Personnel (CAPES-CNPq) for the visiting professor fellowships awarded within science without borders program. The work was funded by the Brazilian Government as the part of the project: CAPES PVE 126/2012 (CNPq no. 402921/2012-7). Additionally, it has been partially supported by grant CTM2012-36476-C02-01-02 funded by the Spanish Ministry of Economy and Competitiveness. The authors showed gratitude to Dr. C.D.S Pereira who provided insight and expertise that greatly assisted the research. The authors thank J. Gaspar and Dr. M.D. Basallote for their assistance in the performance of the bioassays. Moreover, we are grateful to the fishing club in Santos for mussel sampling permission and University of Santa Cecília (UNISANTA) ecotoxicology laboratory group for their logistical support. Also, we would like to thank the anonymous reviewers whose comments and revision substantially contribute to the improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Szalaj.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Thomas Braunbeck

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Szalaj, D., De Orte, M.R., Goulding, T.A. et al. The effects of ocean acidification and a carbon dioxide capture and storage leak on the early life stages of the marine mussel Perna perna (Linneaus, 1758) and metal bioavailability. Environ Sci Pollut Res 24, 765–781 (2017). https://doi.org/10.1007/s11356-016-7863-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7863-y

Keywords

  • Carbon dioxide capture and storage (CCS)
  • Ocean acidification (OA)
  • Climate change
  • Metal bioavailability
  • Marine mussel
  • Early life stages