Environmental Science and Pollution Research

, Volume 24, Issue 1, pp 765–781 | Cite as

The effects of ocean acidification and a carbon dioxide capture and storage leak on the early life stages of the marine mussel Perna perna (Linneaus, 1758) and metal bioavailability

  • D. Szalaj
  • M. R. De Orte
  • T. A. Goulding
  • I. D. Medeiros
  • T. A. DelValls
  • A. Cesar
Research Article

Abstract

The study assesses the effects of carbon dioxide capture and storage (CCS) leaks and ocean acidification (OA) on the metal bioavailability and reproduction of the mytilid Perna perna. In laboratory-scale experiments, CCS leakage scenarios (pH 7.0, 6.5, 6.0) and one OA (pH 7.6) scenario were tested using metal-contaminated sediment elutriates and seawater from Santos Bay. The OA treatment did not have an effect on fertilisation, while significant effects were observed in larval-development bioassays where only 16 to 27 % of larva developed normally. In treatments that simulated CO2 leaks, when compared with control, fertilisation success gradually decreased and no larva developed to the D-shaped stage. A fall in pH increased the bioavailability of metals to marine mussels. Larva shell size was significantly affected by both elutriates when compared with seawater; moreover, a significant difference occurred at pH 6.5 between elutriates in the fertilisation bioassay.

Keywords

Carbon dioxide capture and storage (CCS) Ocean acidification (OA) Climate change Metal bioavailability Marine mussel Early life stages 

Notes

Acknowledgments

The first author thanks the Erasmus Mundus Programme for the Master Fellowship. M.R. De Orte thanks the São Paulo Research Foundation (FAPESP) for the postdoctoral fellowship granted under process 2014/22273-1. A. Cesar thanks the Brazilian National Council for Scientific and Technological Development (CNPq PQ no. 305869/2013-2) for the productivity fellowships awarded. A. DelValls thanks Coordination for the Improvement of Higher Education Personnel (CAPES-CNPq) for the visiting professor fellowships awarded within science without borders program. The work was funded by the Brazilian Government as the part of the project: CAPES PVE 126/2012 (CNPq no. 402921/2012-7). Additionally, it has been partially supported by grant CTM2012-36476-C02-01-02 funded by the Spanish Ministry of Economy and Competitiveness. The authors showed gratitude to Dr. C.D.S Pereira who provided insight and expertise that greatly assisted the research. The authors thank J. Gaspar and Dr. M.D. Basallote for their assistance in the performance of the bioassays. Moreover, we are grateful to the fishing club in Santos for mussel sampling permission and University of Santa Cecília (UNISANTA) ecotoxicology laboratory group for their logistical support. Also, we would like to thank the anonymous reviewers whose comments and revision substantially contribute to the improvement of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abessa DMS, Sousa ECPM, Rachid BRF, Mastroti RR (2001) Sediment toxicity in Santos estuary, SP-Brazil: preliminary results. Ecotoxicol Environ Restor 4(1):6–9Google Scholar
  2. Allen H (1993) The significance of trace metal speciation for water, sediment and soil quality criteria and standards. Sci Total Environ 134:23–45CrossRefGoogle Scholar
  3. Andre C, Rosenberg R (1991) Adult-larval interactions in the suspension-feeding bivalves Cerastoderma edule and Mya arenaria. Mar Ecol Prog Ser 71:227–234CrossRefGoogle Scholar
  4. Anil AC, Desai D, Khandeparker L (2001) Larval development and metamorphosis in Balanus amphitrite Darwin (Cirripedia; Thoracica): significance of food concentration, temperature and nucleic acids. J Exp Mar Biol Ecol 263:125–141CrossRefGoogle Scholar
  5. ASTM - American Society of Testing and Materials. E 724-89 (1992) Standard guide for conducting static toxicity tests starting with embryos of four species of saltwater bivalve molluscs. In: Annual book of ASTM standards: water and environmental technology. Philadelphia, 11: 377–394Google Scholar
  6. Baes CF, Mesmer RE (1976) The hydrolysis of cations. John Wiley & Sons Inc, pp 512Google Scholar
  7. Barros P, Sobral P, Range P, Chícharo L, Matias D (2013) Effects of sea-water acidification on fertilization and larval development of the oyster Crassostrea gigas. J Exp Mar Bio Ecol 440:200–206. doi:10.1016/j.jembe.2012.12.014 CrossRefGoogle Scholar
  8. Basallote MD, De Orte MR, DelValls TA, Riba I (2014) Studying the effect of CO2-induced acidification on sediment toxicity using acute amphipod toxicity test. Environ Sci Technol 48:8864–8872. doi:10.1021/es5015373 CrossRefGoogle Scholar
  9. Basallote MD, Rodríguez-Romero A, De Orte MR, DelValls TA, Riba I (2015) Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves. Aquat Toxicol 166:63–71. doi:10.1016/j.aquatox.2015.07.004 CrossRefGoogle Scholar
  10. Bechmann RK, Taban IC, Westerlund S, Godal BF, Arnberg M, Vingen S, Ingvarsdottir A, Baussant T (2011) Effects of ocean acidification on early life stages of shrimp (Pandalus borealis) and mussel (Mytilus edulis). J Toxicol Environ Health A 74(7–9):424–438. doi:10.1080/15287394.2011.550460 CrossRefGoogle Scholar
  11. Beckerman A, Benton TG, Ranta E, Kaitala V, Lundberg P (2002) Population dynamic consequences of delayed life-history effects. Trends Ecol Evol 17:263–269CrossRefGoogle Scholar
  12. Beesley A, Lowe DM, Pascoe CK, Widdicombe S (2008) Effects of CO2-induced seawater acidification on the health of Mytilus edulis. Clim Res 37:215–225. doi:10.3354/cr00765 CrossRefGoogle Scholar
  13. Beiras R, His E (1994) Effects of dissolved mercury on embryogenesis, survival, growth and metamorphosis of Crassostrea gigas oyster larvae. Mar Ecol Prog Ser 113:95–104. doi:10.3354/meps113095 CrossRefGoogle Scholar
  14. Beniash E, Ivanina A, Lieb NS, Kurochkin I, Sokolova IM (2010) Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Mar Ecol Prog Ser 419:95–108CrossRefGoogle Scholar
  15. Bibby R, Widdicombe S, Parry H, Spicer J, Pipe R (2008) Effects of ocean acidification on the immune response of the blue mussel Mytilus edulis. Aquat Biol 2:67–74. doi:10.3354/ab00037 CrossRefGoogle Scholar
  16. Byrne M (2011) Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Oceanogr Mar Biol Annu Rev 49:1–42Google Scholar
  17. Byrne RH, Kump LR, Cantrell KJ (1988) The influence of temperature and pH on trace metal speciation in seawater. Mar Chem 25:163–181. doi:10.1016/0304-4203(88)90062-X CrossRefGoogle Scholar
  18. Caldeira K, Wickett ME (2005) Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J Geophys Res 110:1–12. doi:10.1029/2004JC002671 CrossRefGoogle Scholar
  19. Câmara GAB, Andrade JCS, Ferreira LEA, Rocha PS (2011) Regulatory framework for geological storage of CO2 in Brazil—analyses and proposal. Int J Greenh Gas Control 5(4:966–974CrossRefGoogle Scholar
  20. Cantrell KJ, Byrne RH (1987) Rare earth complexation by carbonate and oxalate ions. Geochim Cosmochim Ac 51(3):597–605CrossRefGoogle Scholar
  21. Cesar A, Pereira CDS, Santos AR, Abessa DMS, Fernandez N, Choueri RB, DelValls TA (2006) Ecotoxicological assessment of sediments from the Santos and São Vicente estuarine system—Brazil. Braz J Ocean 54:55–63CrossRefGoogle Scholar
  22. CETESB - Environmental Control Agency of the São Paulo State (1981) Heavy metals in the Santos Bay and in the Santos and São Vicente Estuaries. Tecnical Report, São Paulo, pp 231 (in Portuguese)Google Scholar
  23. CETESB - Environmental Control Agency of the São Paulo State (2001) Santos and São Vicente Sistema Estuarine System. Tecnical Report. São Paulo, pp 178 (in Portuguese)Google Scholar
  24. De Orte MR, Lombardi AT, Sarmiento AM, Basallote MD, Rodriguez-Romero A, Riba I, DelValls TA (2014a) Metal mobility and toxicity to microalgae associated with acidification of sediments: CO2 and acid comparison. Mar Environ Res 96:136–144. doi:10.1016/j.marenvres.2013.10.003 CrossRefGoogle Scholar
  25. De Orte MR, Sarmiento AM, Basallote MD, Rodríguez-Romero A, Riba I, DelValls TA (2014b) Effects on the mobility of metals from acidification caused by possible CO2 leakage from sub-seabed geological formations. Sci Total Environ 470-471:356–363. doi:10.1016/j.scitotenv.2013.09.095 CrossRefGoogle Scholar
  26. De Orte MR, Sarmiento AM, DelValls TA, Riba I (2014c) Simulation of the potential effects of CO2 leakage from carbon capture and storage activities on the mobilization and speciation of metals. Mar Pollut Bull 86:59–67CrossRefGoogle Scholar
  27. Del Cielo CC, Malgarin J, Resgalla JR (2013) Review of chronic and acute bioassays with embryos of marine mussel Perna perna (L.). Ecotoxicol Environ Contam 8(2):37–43. doi:10.5132/eec.2013.02.006 in PortugueseGoogle Scholar
  28. Dickson AG (1990) Standard potential of the reaction: AgCl(s) þ 1/2 H2(g) ¼ Ag(s) þ HCl(aq), and the standard acidity constant of the ion HSO_4 in synthetic seawater from 273.15 to 318.15 K. J Chem Thermodyn 22:113–127CrossRefGoogle Scholar
  29. Dickson AG, Millero FJ (1987) A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media. Deep-Sea Res 34:1733–1743CrossRefGoogle Scholar
  30. Dorey N, Lançon P, Thorndyke M, Dupont S (2013) Assessing physiological tipping point of sea urchin larvae exposed to a broad range of pH. Glob Chang Biol 19(11):3355–3367. doi:10.1111/gcb.12276 Google Scholar
  31. Duarte C, Navarro JM, Acuña K, Torres R, Manríquez PH, Lardies MA, Vargas CA, Lagos NA, Aguilera V (2014) Combined effects of temperature and ocean acidification on the juvenile individuals of the mussel Mytilus chilensis. J Sea Res 85:308–314. doi:10.1016/j.seares.2013.06.002 CrossRefGoogle Scholar
  32. Ellis RP, Widdicombe S, Parry H, Hutchinson TH, Spicer JI (2015) Pathogenic challenge reveals immune trade-off in mussels exposed to reduced seawater pH and increased temperature. J Exp Mar Bio Ecol 462:83–89. doi:10.1016/j.jembe.2014.10.015 CrossRefGoogle Scholar
  33. Findlay HS, Wood HL, Kendall MA, Spicer JI, Twitchett RJ, Widdicombe S (2009) Calcification, a physiological process to be considered in the context of the whole organism. Biogeosciences Discuss 6:2267–2284CrossRefGoogle Scholar
  34. Frye E, Bao C, Li L, Blumsack S (2012) Environmental controls of cadmium desorption during CO2 leakage. Environ Sci Technol 46:4388–4395. doi:10.1021/es3005199 CrossRefGoogle Scholar
  35. Gazeau F, Gattuso JP, Dawber C, Pronker E, Peene F, Peene J, Heip CHR, Middelburg JJ (2010) Effect of ocean acidification on the early life stages of the blue mussel Mytilus edulis. Biogeosciences 7:2051–2060. doi:10.5194/bg-7-2051-2010 CrossRefGoogle Scholar
  36. Geffard A, Geffard O, Amiard JC, His E, Amiard-Triquet C (2007) Bioaccumulation of metals in sediment elutriates and their effects on growth, condition index, and metallothionein contents in oyster larvae. Arch Environ Contam Toxicol 53:57–65. doi:10.1007/s00244-006-0046-y CrossRefGoogle Scholar
  37. Gobler CJ, Talmage SC (2014) Physiological response and resilience of early life-stage eastern oysters (Crassostrea virginica) to past, present and future ocean acidification. Conserv Physiol 2. doi:10.1093/conphys/cou004
  38. Gonzalez-Davila M, Santana-Casiano J, Perez-Pena M, Millero FJ (1995) Binding of Cu(II) to the surface and exudates of the alga Dunaliella tertiolecta in seawater. Environ Sci Technol 29:289–301CrossRefGoogle Scholar
  39. Gosselin LA, Qian PY (1997) Juvenile mortality in benthic marine invertebrates. Mar Ecol Prog Ser 146:265–282CrossRefGoogle Scholar
  40. Gutierrez JL, Jones CG, Strayer DL, Iribarne OO (2003) Molluscs as ecosystem engineers: the role of shell production in aquatic habitats. Oikos 101:79–90CrossRefGoogle Scholar
  41. Gutknecht J, Bisson MA, Tosteson FC (1977) Diffusion of carbon dioxide through lipid bilayer membranes: effects of carbonic anhydrase, bicarbonate, and unstirred layers. J Gen Physiol 69:779–794CrossRefGoogle Scholar
  42. Hammer KM, Kristiansen E, Zachariassen KE (2011) Physiological effects of hypercapnia in the deep-sea bivalve Acesta excavata (Fabricius, 1779) (Bivalvia: Limidae). Mar Environ Res 72:135–142. doi:10.1016/j.marenvres.2011.07.002 CrossRefGoogle Scholar
  43. Haugan PM, Drange H (1996) Effects of CO2 on the ocean environment. Energy Convers Manag 37:1019–1022CrossRefGoogle Scholar
  44. Havenhand JN, Schlegel P (2009) Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the oyster Crassostrea gigas. Biogeosci Discuss 6:4573–4586. doi:10.5194/bgd-6-4573-2009 CrossRefGoogle Scholar
  45. Havenhand JN, Buttler FR, Thorndyke MC, Williamson JE (2008) Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Curr Biol 18:651–652. doi:10.1016/j.cub.2008.06.015 CrossRefGoogle Scholar
  46. Hawkins DG (2004) No exit: thinking about leakage from geologic carbon storage sites. Energy 29:1571–1578CrossRefGoogle Scholar
  47. Hayakaze E, Tanabe K (1999) Early larval shell development in mytilid bivalve Mytilus galloprovincialis Japanese. J Malacol 58:119–127Google Scholar
  48. Hicks DW, Tunnell JW (1995) Ecological notes and patterns of dispersal in the recently introduced mussel, Perna-perna (Linne, 1758) in the Gulf-of-Mexico. Am Malacol Bull 11(2):203–206Google Scholar
  49. Hofmann GE, Barry JP, Edmunds PJ, Gates RD, Hutchins DA, Klinger T, Sewell MA (2010) The effect of ocean acidification on calcifying organisms in marine ecosystems: an organism-to-ecosystem perspective. Annu Rev Ecol Evol Syst 41:127–147. doi:10.1146/annurev.ecolsys.110308.120227 CrossRefGoogle Scholar
  50. Hortellani MA, Sarkis JES, Abessa DMS, Sousa ECPM (2008) Assessment of metallic element contamination in sediments from the Santos—São Vicente estuarine system. Quim Nov. 31:10–19. doi:10.1590/S0100-40422008000100003
  51. International Energy Agency (IEA ) (2010) Energy Technology Perspectives 2010: Scenarios & Strategies to 2050, StrategiesGoogle Scholar
  52. Intergovernmental Panel on Climate Change (IPCC) (2014) Summary for Policymakers, In: Edenhofer OR, Pichs-Madruga Y, Sokona E, Farahani S, Kadner K, Seyboth A, Adler I et al. (eds) Climate Change 2014, Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY USAGoogle Scholar
  53. Joos F, Frolicher T, Steinacher M, Plattner GK (2011) Impact of climate change mitigation on ocean acidification projections. In: Gattuso JP, Hansson L (eds) Ocean acidification. Oxford University Press, Oxford, pp. 272–290Google Scholar
  54. Klok C, Wijsman JWM, Kaag K, Foekema E (2014) Effects of CO2 enrichment on cockle shell growth interpreted with a dynamic energy budget model. J Sea Res 94:111–116. doi:10.1016/j.seares.2014.01.011 CrossRefGoogle Scholar
  55. Kniprath E (1981) Ontogeny of the molluscan Shell field: a review. Zool Scr 10:61–79CrossRefGoogle Scholar
  56. Ko GWK, Dineshram R, Campanati C, Chan VBS, Havenhand J, Thiyagarajan V (2014) Interactive effects of ocean acidification, elevated temperature and reduced salinity on early-life stages of the pacific oyster. Environ Sci Technol 48(17):10079–10088. doi:10.1021/es501611u CrossRefGoogle Scholar
  57. Kobayashi N, Okamura H (2005) Effects of heavy metals on sea urchin embryo development. Part 2. Interactive toxic effects of heavy metals in synthetic mine effluents. Chemosphere 61:1198–1203. doi:10.1016/j.chemosphere.2005.02.071 CrossRefGoogle Scholar
  58. Kurihara H (2008) Effects of CO2-driven ocean acidification on the early developmental stages of invertebrates. Mar Ecol Prog Ser 373:275–284. doi:10.3354/meps07802 CrossRefGoogle Scholar
  59. Kurihara H, Kato S, Ishimatsu A (2007) Effects of increased seawater pCO2 on early development of the oyster Crassostrea gigas. Aquat Biol 1:91–98. doi:10.3354/ab00009 CrossRefGoogle Scholar
  60. Kurihara H, Asai T, Kato S, Ishimatsu A (2008) Effects of elevated pCO2 on early development in the mussel Mytilus galloprovincialis. Aquat Biol 4:225–233. doi:10.3354/ab00109 CrossRefGoogle Scholar
  61. Liu W, He M (2012) Effects of ocean acidification on the metabolic rates of three species of bivalve from southern coast of China. Chin J Oceanol Limn 30:206–211CrossRefGoogle Scholar
  62. Lombardi AT, Vieira AAH, Sartori LA (2002) Mucilaginous capsule adsorption and intracellular uptake of copper by Kirchneriella aperta (Chlorococcales). J Phycol 38:332–337CrossRefGoogle Scholar
  63. London Convention (2006) Risk assessment and management framework for CO2 sequestration in sub-seabed geological formations. London Convention on the prevention of Marine Pollution by Dumping of Wastes and Other Matter 1972 and 1996 Protocol TheretoGoogle Scholar
  64. Marques HLA (1998) Commercial production of mussels. Nobel, São Paulo, p. 111 in PortugueseGoogle Scholar
  65. Martin M, Osborn KE, Billig P, Glickstein N (1981) Toxicities of ten metals to Crassostrea gigas and Mytilus edulis embryos and Cancer magister larvae. Mar Pollut Bull 12:305–308. doi:10.1016/0025-326X(81)90081-3 CrossRefGoogle Scholar
  66. McConville K, Halsband C, Fileman ES, Somerfield PJ, Findlay HS, Spicer JI (2013) Effects of elevated CO2 on the reproduction of two calanoid copepods. Mar Pollut Bull 73:428–434CrossRefGoogle Scholar
  67. Mehrbach C, Culberson C, Hawley J, Pytkowicz R (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907CrossRefGoogle Scholar
  68. Millero FJ (1992) Stability constants for the formation of rare earth inorganic complexes of a function of ionic strength. Geochim Cosmochim Ac 56(8):3123–3132CrossRefGoogle Scholar
  69. Millero FJ (2001) Speciation of metals in natural waters. Geochem Trans 2(8):56–64. doi:10.1039/b104809k Google Scholar
  70. Millero FJ, Hawke DJ (1992) Ionic interactions of divalent metals in natural waters. Mar Chem 40:19–48CrossRefGoogle Scholar
  71. Millero FJ, Yao W, Aicher J (1995) The speciation of iron (II) and (III) in natural waters. Mar Chem 50:21–39CrossRefGoogle Scholar
  72. Millero FJ, Graham T, Huang F, Bustos H, Pierrot D (2006) Dissociation constants for carbonic acid in seawater as a function of temperature and salinity. Mar Chem 100:80–94CrossRefGoogle Scholar
  73. Millero FJ, Woosley R, DiTrolio B, Waters J (2009) Effect of ocean acidification on the speciation of metals in seawater. Oceanography 22:72–85. doi:10.5670/oceanog.2009.98 CrossRefGoogle Scholar
  74. Nadella SR, Fitzpatrick JL, Franklin N, Bucking C, Smith S, Wood CM (2009) Toxicity of dissolved Cu, Zn, Ni and Cd to developing embryos of the blue mussel (Mytilus trossolus) and the protective effect of dissolved organic carbon. Comp Biochem Physiol- C Toxicol Pharmacol 149:340–348. doi:10.1016/j.cbpc.2008.09.001 CrossRefGoogle Scholar
  75. Navarro JM, Torres R, Acuña K, Duarte C, Manriquez PH, Lardies M, Lagos NA, Vargas C, Aguilera V (2013) Impact of medium-term exposure to elevated pCO2 levels on the physiological energetics of the mussel Mytilus chilensis. Chemosphere 90:1242–1248CrossRefGoogle Scholar
  76. Nogueira PFM, Melao MGG, Lombardi AT, Vieira AAH (2005) The effects of Anabaena spiroides (Cyanophyceae) exopolysaccha- ride on copper toxicity to Simocephalus serrulatus (Cladocera, Daphnidae). Freshw Biol 50:1560–1567CrossRefGoogle Scholar
  77. Orr JC, Fabry VJ, Aumont O, Bopp L, Doney SC, Feely RA, Gnanadesikan A, Gruber N, Ishida A, Joos F, Key RM, Lindsay K, Maier-Reimer E, Matear R, Monfray P, Mouchet A, Najjar RG, Plattner G-K, Rodgers KB, Sabine CL, Sarmiento JL, Schlitzer R, Slater RD, Totterdell IJ, Weirig M-F, Yamanaka Y, Yool A (2005) Anthropogenic Ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437:681–686CrossRefGoogle Scholar
  78. OSPAR Convention (2007) Guidelines for risk assessment and management of storage of carbon dioxide streams in sub-seabed geological formations, OSPAR Convention for the Protection of the Marine Environment of the North-East AtlanticGoogle Scholar
  79. Palmer AR (1992) Calcification in marine mollusks: how costly is it? Proc Natl Acad Sci U S A 89:1379–1382CrossRefGoogle Scholar
  80. Pan TCF, Applebaum SL, Manahan DT (2015) Experimental Ocean acidification alters the allocation of metabolic energy. PNAS 112(15):4696–4701CrossRefGoogle Scholar
  81. Parker LM, Ross PM, O’Connor WA (2010) Comparing the effect of elevated pCO2 and temperature on the fertilization and early development of two species of oysters. Mar Biol 157:2435–2452. doi:10.1007/s00227-010-1508-3 CrossRefGoogle Scholar
  82. Pavičić J, Škreblin M, Kregar I, Tušek-Žnidarič M, Stegnart P (1994) Embryo-larval tolerance of Mytilus galloprovincialis, exposed to the elevated sea water metal concentrations—I. Toxic effects of Cd, Zn and Hg in relation to the metallothionein level. Comp Biochem Physiol C Pharmacol Toxicol Endocrinol 107(2):249–257. doi:10.1016/1367-8280(94)90048-5 CrossRefGoogle Scholar
  83. Pechenik JA (2006) Larval experience and latent effects-metamorphosis is not a new beginning. Integr Comp Biol 46:323–333CrossRefGoogle Scholar
  84. Phillips NE (2002) Effects of nutrition-mediated larval condition on juvenile performance in a marine mussel. Ecology 83:2562–2574CrossRefGoogle Scholar
  85. Phillips NE (2004) Variable timing of larval food has consequences for early juvenile performance in a marine mussel. Ecology 85:2341–2346CrossRefGoogle Scholar
  86. Pierrot D, Lewis E, Wallace DWR (2006) MS Excel Program Developed for CO2 System Calculation. ORNL/CDIAC 105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, TennesseeGoogle Scholar
  87. Poli CR, Littlepage J (1998) Development of the aquaculture of mollusks in the Santa Catarina state. Proceedings of the I South American Congress of Aquaculture. Recife, PE, Brazil. 45–49 (in Portuguese)Google Scholar
  88. Range P, Piló D, Ben-Hamadou R, Chícharo M, Matias D, Joaquim S, Oliveira P, Chícharo L (2012) Seawater acidification by CO2 in a coastal lagoon environment: effects on life history traits of juvenile mussels Mytilus galloprovincialis. J Exp Mar Bio Ecol 424-425:89–98. doi:10.1016/j.jembe.2012.05.010 CrossRefGoogle Scholar
  89. Rensing C, Maier RM (2003) Issues underlying use of biosensors to measure metal bioavailability. Ecotoxicol Environ Saf 56:140CrossRefGoogle Scholar
  90. Riba I, García-Luque E, Blasco J, DelValls TA (2003) Bioavailability of heavy metals bound to estuarine sediments as a function of pH and salinity values. Chem Spec Bioavail 15:101–114CrossRefGoogle Scholar
  91. Riba I, Kalman J, Vale C, Blasco J (2010) Influence of sediment acidification on the bioaccumulation of metals in Ruditapes philippinarum. Environ Sci Pollut 17:1519–1528CrossRefGoogle Scholar
  92. Rios E (1984) Sea shells of Brazil. 2nd ed. Editora da FURG, Rio Grande, p. 368Google Scholar
  93. Roberts DA, Birchenough SNR, Lewis C, Sanders MB, Bolam T, Sheahan D (2013) Ocean acidification increases the toxicity of contaminated sediments. Glob Chang Biol 19:340–351CrossRefGoogle Scholar
  94. Rodríguez-Romero A, Basallote MD, De Orte MR, DelValls TA, Riba I, Blasco J (2014) Simulation of CO2 leakages during injection and storage in sub-seabed geological formations: metal mobilization and biota effects. Environ Int 68:105–117. doi:10.1016/j.envint.2014.03.008
  95. Ross PM, Parker L, O’Connor WA, Bailey EA (2011) The impact of ocean acidification on reproduction, early development and settlement of marine organisms. Water 3:1005–1030. doi:10.3390/w3041005 CrossRefGoogle Scholar
  96. Schreiber DR, Gordon AS, Millero FJ (1985) The toxicity of copper to the marine bacterium Vibrio alginolyticus. Can J Microbiol 31:83–87CrossRefGoogle Scholar
  97. Seed R, Suchanek TH (1992) Population and community ecology of Mytilus. In: Gosling E (ed) The mussel Mytilus: ecology, physiology, genetics and culture developments in aquaculture and fisheries science, 25. Elsevier, Amsterdam ISBN 0-444-88752-0. XIII: 87-169Google Scholar
  98. Siddal (1980) A clarification of the genus Perna (Mytilidade). Bull Mar Sci 30:858–870Google Scholar
  99. Silva IX, Morares RP, dos Santos RP, Pompeia SL, Martins SE (1991) Evaluation of the state of ecosystem degradation in the Baixada Santista (Sao Paulo state) Relatório Técnico CETESB. São Paulo. p 45 (in Portuguese)Google Scholar
  100. Styan CA (1998) Polyspermy, egg size, and the fertilization kinetics of free-spawning marine invertebrates. Am Nat 152:290–297Google Scholar
  101. Suchanek TH (1992) Extreme biodiversity in the marine environment: mussel bed communities of Mytilus californianus. Northwest Environ J 8(1):150–152Google Scholar
  102. Talmage SC, Gobler CJ (2009) The effects of elevated carbon dioxide concentrations on the metamorphosis, size, and survival of larval hard clams (Mercenaria mercenaria), bay scallops (Argopecten irradians), and eastern oysters (Crassostrea virginica). Limnol Oceanogr 54:2072–2080. doi:10.4319/lo.2009.54.6.2072 CrossRefGoogle Scholar
  103. Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45CrossRefGoogle Scholar
  104. Torres RJ, Cesar A, Pastor V, Pereira CDS, Choueri RB, Cortez FS, Morais RD, Abessa DMS, do Nascimento MRL, Morais CR, Fadini OS, DelValls Casillas TA, Mozeto A (2014) A critical comparison of different approaches to sediment-quality assessments in the Santos estuarine system in Brazil. Arch Environ Contam Toxicol 68:132–147. doi:10.1007/s00244-014-0099-2 CrossRefGoogle Scholar
  105. Turley C, Nightingale P, Riley N, Widdicombe S, Joint I, Gallienne C, Lowe D, Goldson L, Beaumont N, Mariotte P, Groom S, Smerdon G, Rees A, Blackford J, Owens N, West J, Land P, Woodason E (2004) Literature review: environmental impacts of a gradual or catastrophic release of CO2 into the marine environment following carbon dioxide capture. The UK Department for Environment. Food and Rural affairs, LondonGoogle Scholar
  106. US Environmental Protection Agency (USEPA) (1991) Short-term methods for estimating the chronic toxicity of effluents and receiving waters to marine and estuarine organisms. EPA/600/4-91/003-U.S. Environmental Protection Agency, Cincinati, pp. 579Google Scholar
  107. US Environmental Protection Agency (USEPA) (1993) Office of Water Policy and Technical Guidance on Interpretation and Implementation of Aquatic Life Metals Criteria, United States Environmental Protection Agency, Washington, DC. 20460Google Scholar
  108. US Environmental Protection Agency (USEPA) (1998) Evaluation of dredged material proposed for discharge in waters of the U.S.—testing manual, US Army Corps of Engineers. United State Environmental Protection Agency, Office of Water, EPA-823-B-98-004Google Scholar
  109. US Environmental Protection Agency (USEPA) (2001) Methods for Collection, Storage and Manipulation of Sediments for Chemical and Toxicological Analyses: Technical Manual. USEPA, Office of Water, EPA – 823-B-01- 002Google Scholar
  110. Waldbusser GG, Bergschneider H, Green MA (2010) Size-dependent pH effect on calcification in post-larval hard clam Mercenaria sp. Mar Ecol Prog Ser 417:171–182CrossRefGoogle Scholar
  111. Waller TR (1981) Functional morphology and development of veliger larvae of the European oyster, Ostrea edulis Linné. Smithson. Contrib to Zool 328:1–70CrossRefGoogle Scholar
  112. Weiss IM, Tuross N, Addadi L, Weiner S (2002) Mollusc larval shell formation: amorphous calcium carbonate is a precursor phase for aragonite. J Exp Zool 293:478–491. doi:10.1002/jez.90004 CrossRefGoogle Scholar
  113. Weydmann A, Søreide JE, Kwasniewski S, Widdicombe S (2012) Influence of CO2-induced acidification on the reproduction of a key Arctic copepod Calanus glacialis. J Exp Mar Bio Ecol 428:39–42. doi:10.1016/j.jembe.2012.06.002 CrossRefGoogle Scholar
  114. Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc Biol Sci 275:1767–1773CrossRefGoogle Scholar
  115. Yamada Y, Ikeda T (1999) Acute toxicity of lowered pH to some oceanic zooplankton. Plankton Biology and Ecology 46(1):62–67Google Scholar
  116. Zardus JD, Martel AL (2002) Phylum Mollusca: Bivalvia. In: Young CM, Sewell MA, Rice ME (eds) Atlas of marine invertebrate larvae. Academic Press, San Diego, pp. 289–325Google Scholar
  117. Zaroni LP, Abessa DMS, Lotufo GR, Sousa ECPM, Pinto Y (2005) Toxicity testing with embryos of marine mussels: protocol standardization for Perna perna (Linnaeus, 1758). Bull Environ Contam Toxicol 74:793–800. doi:10.1007/s00128-005-0651-x CrossRefGoogle Scholar

Web references

  1. Global CCS Institute (2015) The Global Status of CCS. Online: http://hub.globalccsinstitute.com/sites/default/files/publications/196843/global-status-ccs-2015-summary.pdf (Viewed: 20th September 2016)
  2. National Oceanic and Atmospheric Administration (NOAA) (2015) Earth System Research Laboratory. http://www.esrl.noaa.gov/gmd/ccgg/trends/ (Viewed: 4th March 2015)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D. Szalaj
    • 1
    • 2
  • M. R. De Orte
    • 1
  • T. A. Goulding
    • 3
  • I. D. Medeiros
    • 1
  • T. A. DelValls
    • 3
  • A. Cesar
    • 1
  1. 1.Departamento de Ciências do Mar. Instituto do Mar, Campus Baixada SantistaUniversidade Federal de São PauloSantosBrazil
  2. 2.Faculdade de Ciências, Instituto Dom LuizUniversidade de LisboaCampo GrandePortugal
  3. 3.Departamento de Química-Física, Facultad de Ciencias del Mar y Ambientales, Universidad de CádizUNESCO/UNITWIN WicopCádizSpain

Personalised recommendations