Skip to main content
Log in

Copper phytoextraction by Salvinia cucullata: biochemical and morphological study

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The present study investigated the effect of copper on photosynthesis, antioxidant potential, and anatomical response of aquatic fern, Salvinia cucullata, with a view to ascertain its phytoremediation potential. Plants were exposed in hydroponics for 21 days to different Cu concentrations (10, 15, 20, and 30 mg/L). Significant declines in chlorophyll, carotenoids, and soluble proteins, as a function of Cu proportion were observed. Lipid peroxidation was also evident, which implied reactive oxygen species (ROS) generation. However, both root and leaf tissues responded remarkably to the ROS produced, by inducing superoxide dismutase (1.6–6.5 times), catalase (1.5–5.4 times), guaicol peroxidase (1.5–7.2 times), and ascorbyl peroxidase (1.3–4.7 times) over the control. The plant showed best phytoremedial activity within Cu range of 10–15 mg/L, with maximum accumulation of 2956 ± 82.6 μg/g dw., at 15 mg Cu/L and showed efficient root to shoot translocation (translocation factor, TF > 1) at this range, which is the stipulated minimum requirement to be a hyperaccumulator. The capacity of metal extraction from environment to leaf (extraction coefficient, EC) was also high (EC = 73–197). However, at higher doses (20–30 mg/L), the plant resorted to an exclusion strategy, whereby, more metal accumulation was observed in root than in leaf. The plant conferred suitable remediation attributes by showing minimal root and leaf anatomical damages along with high Ca peaks in both the tissues, and rapid leaf stomatal closure, all of which probably helped in the Cu induced stress mitigation. Due to its widespread availability, fast growth, ability to grow in myriads of polluted environment, and having hardy physiology, this plant can be suggested for use as a suitable Cu phytoremediator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdel Latef AA (2011) Influence of arbuscular mycorrhizal fungi and copper on growth accumulation of osmolyte, mineral nutrition and antioxidant enzyme activity of pepper (Capsicum annuum L.). Mycorrhiza 21:495–503

    Article  CAS  Google Scholar 

  • Alloway BJ (2008) Copper and zinc in soils: too much or too much? In: New Zealand Trace Elements Group Conference, 13–15 Feb. University of Waikato, Hamilton, p 10

  • Almeida CMR, Mucha AP, Vasconcelos MTSD (2006) Comparison of the role of the sea club-rush Scirpus maritimus and the sea rush Juncus maritimus in terms of concentration, speciation and bioaccumulation of metals in the estuarine sediment. Environ Pollut 142:151–159

    Article  CAS  Google Scholar 

  • Ambrosini VG, Rosa DJ, Prado JPC, Borghezan M, de Melo GWB, de Sousa Soares CRF, Comin JJ, Simáo DG, Brunetto G (2015) Reduction of copper phytotoxicity by liming: a study of the root anatomy of young vines (Vitis labrusca L.). Plant Physiol Bioch 96:270–280

    Article  CAS  Google Scholar 

  • APHA (American Public Health Association) (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DC, p. 1368

    Google Scholar 

  • Badr NBE, Fawzy M (2008) Bioaccumulation and biosorption of heavy metals and phosphorous by Potamogeton pectinatus L. And Ceratophyllum demersum L. In two Nile delta lakes. Fresenius Environ Bull 17:282–292

    CAS  Google Scholar 

  • Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Beers RF, Sizer IW (1952) Colorimetric method for estimation of catalase. J Biol Chem 195:133–139

    CAS  Google Scholar 

  • Brunetto G, Miotto A, Ceretta CA, Schmitt DE, Heinzen J, Moraes MP, Canton L, Tiecher TL, Comin JJ, Girotto E (2014) Mobility of copper and zinc fractions in fungicide amended vineyard sandy soils. Arch Agron Soil Sci 60:609–624

    Article  CAS  Google Scholar 

  • Demirezen D, Aksoy A (2004) Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in sultan marsh (Kayseri, Turkey). Chemosphere 56:685–696

    Article  CAS  Google Scholar 

  • Devi SR, Prasad MNV (1998) Copper toxicity in Ceratophyllum demersum L. (Coontail), a free floating macrophyte: response of antioxidant enzymes and antioxidants. Plant Sci 138:157–165

    Article  CAS  Google Scholar 

  • Fabrizio F, Coccioni R (2012) The response of benthic foraminiferal assemblages to copper exposure: a pilot mesocosm investigation. J Environ Prot 3:342–352

    Article  CAS  Google Scholar 

  • Franceschi VR, Nakata PA (2005) Calcium oxalate in plants: formation and function. Annu Rev Plant Biol 56:41–71

    Article  CAS  Google Scholar 

  • Fuentes II, Espadas-Gil F, Talavera-May C, Fuentes G, Santamaría JM (2014) Capacity of the aquatic fern (Salvinia minima baker) to accumulate high concentrations of nickel in its tissues, and its effect on plant physiological processes. Aquat Toxicol 155:142–150

    Article  CAS  Google Scholar 

  • Garbisu C, Alkorta I (2001) Phytoextraction: a cost effective plant-based technology for the removal of metals from the environment. Bioresource Technol 77:229–236

    Article  CAS  Google Scholar 

  • Goswami S, Das S (2015) A study on cadmium phytoremediation potential of Indian mustard, Brassica juncea. Int J Phytoremediat 17:583–588

    Article  CAS  Google Scholar 

  • Goswami S, Das S (2016) Copper phytoremediation potential of Calandula officinalis L. and the role of antioxidant enzymes in metal tolerance. Ecotox Environ Safe 126:211–218

    Article  CAS  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplasts I. Kinetic and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  Google Scholar 

  • Hondulas JL (1994) Treatment of polluted water using wetland plants in a floating habitat. US patent 5337516 A.

  • Jampeetong A, Brix H, Kantawanichkul S (2012) Effects of inorganic nitrogen forms on growth, morphology, nitrogen uptake capacity and nutrient allocation of four tropical aquatic macrophytes (Salvinia cucullata, Ipomoea aquatica, Cyperus involucratus and Vetiver iazizanioides). Aquat Bot 97:10–16

    Article  CAS  Google Scholar 

  • Juang KW, Lee YI, Lai HY, Chen BO (2014) Influence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines. Ecotox Environ Safe 104:36–42

    Article  CAS  Google Scholar 

  • Kabata-Pendias A (2011) Trace elements in soils and plants, fourth edn. CRC Press, Boca Raton

    Google Scholar 

  • Leal-Alvarado DA, Espadas-Gil F, Sáenz-Carbonell L, Talavera-May C, Santamaría JM (2016) Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima baker by affecting the cell membrane and inducing stomatal closure. Aquat Toxicol 171:37–47

    Article  CAS  Google Scholar 

  • Liao S, Chang N (2004) Heavy metal phytoremediation by water hyacinth at constructed wetlands in Taiwan. J Aquatic Plant Manag 42:60–68

    Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. In: Sies H, Douce R, Colowick N, Kaplan N (eds) Methods in enzymology-plant cell membranes, vol 148. Academic, San Diego, pp. 350–381

    Chapter  Google Scholar 

  • Lowry OH, Rosenberg NJ, Farr AL, Randall RJ (1951) Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275

    CAS  Google Scholar 

  • Lu Q, He ZL, Graetz DA, Stoffella PJ, Yang X (2011) Uptake and distribution of metals by water lettuce (Pistia stratiotes L.). Environ Sci Pollut R 18:978–986

    Article  CAS  Google Scholar 

  • Macnicol RD, Beckett PHT (1985) Critical tissue concentrations of potentially toxic elements. Plant Soil 85:107–129

    Article  CAS  Google Scholar 

  • Manios T, Stentiford EI, Millner PA (2003) The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metaliferus water. Ecol Eng 20:65–74

    Article  Google Scholar 

  • Mateos-Naranjo E, Andrades-Moreno L, Cambrollé J, Perez-Martin A (2013) Assessing the effect of copper on growth, copper accumulation and physiological responses of grazing species Atriplex halimus: ecotoxicological implications. Ecotox Environ Safe 90:136–142

    Article  CAS  Google Scholar 

  • McFarland DG, Nelson LS, Grodowitz MJ, Smart RM, Owens CS (2004) Salvinia molesta D.S. Mitchell (Giant Salvinia) in the United States: a review of species ecology and approaches to management. Environmental laboratory ERDC/EL SR-04-2. US Army Corps of Engineer, Engineer Research and Development Center, Washington, DC, pp. 1–33

    Google Scholar 

  • Monferrán MV, Sánchez Agudoa JA, Pignata ML, Wunderlin DA (2009) Copper-induced response of physiological parameters and antioxidant enzymes in the aquatic macrophyte Potamogeton pusillus. Environ Pollut 157:2570–2576

    Article  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Olguín EJ, Hernández E, Ramos I (2002) The effect of both different light conditions and the pH value on the capacity of Salvinia minima baker for removing cadmium, lead and chromium. Acta Biotechnol 22:121–131

    Article  Google Scholar 

  • Ostroumov SA, Shestakova TV (2009) Decreasing the measurable concentrations of Cu, Zn, Cd, and Pb in the water of the experimental systems containing Ceratophyllum demersum: the phytoremediation potential. Doklady Biol Sci 428:444–447

    Article  CAS  Google Scholar 

  • Peng SL, Du WB, Li ZA (2004) A review of heavy metal accumulation and tolerance by plants of different ecotype. J Jishou Univ (Nat Sci Ed) 35:19–26

    Google Scholar 

  • Perreault F, Popovic R, Dewez D (2014) Different toxicity mechanisms between bare and polymer-coated copper oxide nanoparticles in Lemna gibba. Environ Pollut 185:219–227

    Article  CAS  Google Scholar 

  • Prado C, Rodríguez-Montelongo L, González JA, Pagano EA, Hilal M, Prado FE (2010) Uptake of chromium by Salvinia minima: effect on plant growth, leaf respiration and carbohydrate metabolism. J Hazard Mater 177:546–553

    Article  CAS  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  Google Scholar 

  • Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066

    Article  CAS  Google Scholar 

  • Samecka-Cymerman A, Kempers AJ (2004) Toxic metals in aquatic plants surviving in surface water polluted by copper mining industry. Ecotox Environ Safe 59:64–69

    Article  CAS  Google Scholar 

  • Sandalio LM, Dalurzo HC, Goımeź M, Romero-Puertas MC, del Rio LA (2001) Cadmium-induced changes in the growth and oxidative metabolism of pea plants. J Exp Bot 52:2115–2126

    CAS  Google Scholar 

  • Souza IRP, MacAdam JW (1998) A transient increase in apoplastic peroxidase activity precedes decrease in elongation rate of B73 maize (Zea mays L.) leaf blades. Physiol Plantarum 104:556–562

    Article  Google Scholar 

  • Suñé N, Sánchez G, Caffaratti S, Maine MA (2007) Cadmium and chromium removal kinetics from solution by two aquatic macrophytes. Environ Pollut 145:467–473

    Article  Google Scholar 

  • Sweta BK, Singh R, Singh RP (2015) The suitability of Trapa natans for phytoremediation of inorganic contaminants from the aquatic ecosystems. Ecol Eng 83:39–42

    Article  Google Scholar 

  • Upadhyay RK, Panda SK (2009) Copper-induced growth inhibition, oxidative stress and ultrastructural alterations in freshly grown water lettuce (Pistia stratiotes L.). C R Biologies 332:623–632

    Article  CAS  Google Scholar 

  • Valipour A, Raman VK, Ghole VS (2011) Application of patent bio-rack wetland system using phragmites sp. for domestic wastewater treatment in the presence of high total dissolved solids (TDS) and heavy metal salts. J Environ Sci Eng 53:281–288

    CAS  Google Scholar 

  • Vamerali T, Bandiera M, Mosca G (2010) Field crops for phytoremediation of metal-contaminated land, a review. Environ Chem Lett 8:1–17

    Article  CAS  Google Scholar 

  • Voitsekhovskaja OV, Tyutereva EV (2015) Chlorophyll b in angiosperms: functions in photosynthesis, signaling and ontogenetic regulation. J Plant Physiol 189:51–64

    Article  CAS  Google Scholar 

  • Webb AAR, McAinsh MR, Mansfield TA, Hetherington AM (1996) Carbon dioxide induces increases in guard cell cytosolic free calcium. The Plant J 9:297–304

    Article  CAS  Google Scholar 

  • Yang TB, Poovaiah BW (2003) Calcium/calmodulin-mediated signal network in plants. Trends Plant Sci 8:505–512

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the Sophisticated Analytical Instrumentation Facility, North Eastern Hill University, Shillong, India, for the SEM-EDX facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchismita Das.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Goswami, S. Copper phytoextraction by Salvinia cucullata: biochemical and morphological study. Environ Sci Pollut Res 24, 1363–1371 (2017). https://doi.org/10.1007/s11356-016-7830-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7830-7

Keywords

Navigation