Environmental Science and Pollution Research

, Volume 24, Issue 1, pp 299–311 | Cite as

Prediction of municipal solid waste generation using artificial neural network approach enhanced by structural break analysis

  • Vladimir M. Adamović
  • Davor Z. Antanasijević
  • Mirjana Đ. Ristić
  • Aleksandra A. Perić-Grujić
  • Viktor V. Pocajt
Research Article

Abstract

This paper presents the development of a general regression neural network (GRNN) model for the prediction of annual municipal solid waste (MSW) generation at the national level for 44 countries of different size, population and economic development level. Proper modelling of MSW generation is essential for the planning of MSW management system as well as for the simulation of various environmental impact scenarios. The main objective of this work was to examine the potential influence of economy crisis (global or local) on the forecast of MSW generation obtained by the GRNN model. The existence of the so-called structural breaks that occur because of the economic crisis in the studied period (2000–2012) for each country was determined and confirmed using the Chow test and Quandt–Andrews test. Two GRNN models, one which did not take into account the influence of the economic crisis (GRNN) and another one which did (SB-GRNN), were developed. The novelty of the applied method is that it uses broadly available social, economic and demographic indicators and indicators of sustainability, together with GRNN and structural break testing for the prediction of MSW generation at the national level. The obtained results demonstrate that the SB-GRNN model provide more accurate predictions than the model which neglected structural breaks, with a mean absolute percentage error (MAPE) of 4.0 % compared to 6.7 % generated by the GRNN model. The proposed model enhanced with structural breaks can be a viable alternative for a more accurate prediction of MSW generation at the national level, especially for developing countries for which a lack of MSW data is notable.

Keywords

MSW management General regression neural network Structural breaks 

References

  1. Ali Abdoli M, Falah Nezhad M, Salehi Sede R, Behboudian S (2011) Longterm forexasting of solid waste generation by the artificial neural networks. Environ Prog Sustain Energy 31:628–636. doi:10.1002/ep.10591 CrossRefGoogle Scholar
  2. Andrews DWK, Ploberger W (1994) Optimal tests when a nuisance parameter is present only under the alternative. Econometrica 62:1383–1414CrossRefGoogle Scholar
  3. Antanasijević D, Pocajt V, Popović I et al (2013a) The forecasting of municipal waste generation using artificial neural networks and sustainability indicators. Sustain Sci 8:37–46. doi:10.1007/s11625-012-0161-9 CrossRefGoogle Scholar
  4. Antanasijević DZ, Ristić MĐ, Perić-Grujić AA, Pocajt VV (2013b) Forecasting human exposure to PM10 at the national level using an artificial neural network approach. J Chemom 27:170–177. doi:10.1002/cem.2505 CrossRefGoogle Scholar
  5. Antanasijević D, Pocajt V, Perić A, Ristić M (2014) Modelling of dissolved oxygen in the Danube River using artificial neural networks and Monte Carlo simulation uncertainty analysis. J Hydrol 519:1–26. doi:10.1016/j.jhydrol.2014.10.009 CrossRefGoogle Scholar
  6. Bandara NJGJ, Hettiaratchi JPA, Wirasinghe SC, Pilapiiya S (2007) Relation of waste generation and composition to socio-economic factors: a case study. Environ Monit Assess 135:31–39. doi:10.1007/s10661-007-9705-3 CrossRefGoogle Scholar
  7. Batinic B, Vukmirovic S, Vujic G et al (2011) Using ANN model to determine future waste characteristics in order to achieve specific waste management targets -case study of Serbia. J Sci Ind Res (India) 70:513–518Google Scholar
  8. Benítez SO, Lozano-Olvera G, Morelos RA, de Vega CA (2008) Mathematical modeling to predict residential solid waste generation. Waste Manag 28(Suppl 1):S7–S13. doi:10.1016/j.wasman.2008.03.020 CrossRefGoogle Scholar
  9. Berger T (2011) Estimating Europe’s natural rates. Empir Econ 40:521–536. doi:10.1007/s00181-010-0342-2 CrossRefGoogle Scholar
  10. Breede D, Bloom D (1995) Economics of the generation and management of municipal solid waste. New YorkGoogle Scholar
  11. Chau KW, Wu CL (2010) A hybrid model coupled with singular spectrum analysis for daily rainfall prediction. J Hydroinformatics 12:458–473. doi:10.2166/hydro.2010.032 CrossRefGoogle Scholar
  12. Chen Y, Chang FJ (2009) Evolutionary artificial neural networks for hydrological systems forecasting. J Hydrol 367:125–137. doi:10.1016/j.jhydrol.2009.01.009 CrossRefGoogle Scholar
  13. Chung SS (2010) Projecting municipal solid waste: the case of Hong Kong SAR. Resour Conserv Recycl 54:759–768. doi:10.1016/j.resconrec.2009.11.012 CrossRefGoogle Scholar
  14. Daskalopoulos E, Badr O, Probert SD (1998) Municipal solid waste: a prediction methodology for the generation rate and composition in the European Union countries and the United States of America. Resour Conserv Recycl 24:155–166. doi:10.1016/S0921-3449(98)00032-9 CrossRefGoogle Scholar
  15. Denafas G, Ruzgas T, Martuzevičius D et al (2014) Seasonal variation of municipal solid waste generation and composition in four east European cities. Resour Conserv Recycl 89:22–30. doi:10.1016/j.resconrec.2014.06.001 CrossRefGoogle Scholar
  16. Dustmann C, Fitzenberger B, Schönberg U, Spitz-oener A (2014) From sick man of Europe to economic superstar : Germany ’ s resurgent economy †. J Econ Perspect 28:167–188CrossRefGoogle Scholar
  17. Duveiller G, Fasbender D, Meroni M (2016) Revisiting the concept of a symmetric index of agreement for continuous datasets. Sci Rep. doi:10.1038/srep19401 Google Scholar
  18. Dwyer GP, Lothian JR (2012) International and historical dimensions of the financial crisis of 2007 and 2008. J Int Money Financ 31:1–9. doi:10.1016/j.jimonfin.2011.11.006 CrossRefGoogle Scholar
  19. Dyson B, Chang N (2005) Forecasting municipal solid waste generation in a fast-growing urban region with system dynamics modeling. Waste Manag 25:669–679. doi:10.1016/j.wasman.2004.10.005 CrossRefGoogle Scholar
  20. ETC/ECP (2013) Municipal waste management in Latvia. European Environment AgencyGoogle Scholar
  21. ETC/SCP (2013a) Municipal waste management in Norway. European Environment Agency (EEA)Google Scholar
  22. ETC/SCP (2013b) Municipal waste management in Slovenia. European Environment AgencyGoogle Scholar
  23. European Commission (2015) Eurostat. http://ec.europa.eu/eurostat. Accessed 27 Aug 2015
  24. European Environment Agency (2014) MSW generation and treatment, by type of treatment method. http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tsdpc240&plugin=1. Accessed 4 Mar 2015
  25. Eurostat (2015) Municipal Solid Waste generation. http://ec.europa.eu/eurostat/tgm/table.do?tab=table&init=1&language=en&pcode=tsdpc240&plugin=1. Accessed 15 Jul 2016
  26. Freeman JA, Skapura DM (1991) Neural networks: algorithms, applications and programming techniques. Addison-Wesley Publishing Company, Houston, Texas, USAGoogle Scholar
  27. Gallardo A, Carlos M, Peris M, Colomer FJ (2014) Methodology to design a municipal solid waste generation and composition map: a case study. Waste Manag 34:1920–1931. doi:10.1016/j.wasman.2014.05.014 CrossRefGoogle Scholar
  28. Gómez G, Meneses M, Ballinas L, Castells F (2009) Seasonal characterization of municipal solid waste (MSW) in the city of Chihuahua, Mexico. Waste Manag 29:2018–2024. doi:10.1016/j.wasman.2009.02.006 CrossRefGoogle Scholar
  29. Greene WH (2012) Econometric analysis, Seventh edn. Pearson Education Limited, Harlow, Essex, England, UKGoogle Scholar
  30. Gujarati DN, Porter DC (2009) Basic econometrics, 5th edn. McGraw-Hill Irwin, New YorkGoogle Scholar
  31. Hamilton LC (1990) Modern data analysis: a first course in aplied statistics. Brooks/Cole Pub. Co., Pacific Grove, CA, USAGoogle Scholar
  32. Hoornweg D, Bhada-Tata P (2012) What a waste—a global review of solid waste management. Washington, DC 20433 USAGoogle Scholar
  33. Inglezakis V, Zorpas A, Venetis C et al (2012) Municipal solid waste generation and economic growth analysis for the years 2000-2013 in Romania, Bulgaria, Slovenia and Greece. Fresenius Environ Bull 21:2362–2367Google Scholar
  34. Intharathirat R, Abdul Salam P, Kumar S, Untong A (2015) Forecasting of municipal solid waste quantity in a developing country using multivariate grey models. Waste Manag. doi:10.1016/j.wasman.2015.01.026 Google Scholar
  35. Kara P (2014) Recycling of glass wastes in Latvia—its application as cement substitute in self-compacting concrete. J Sustain Archit Civ Eng. doi:10.5755/j01.sace.6.1.6127 Google Scholar
  36. Keser S, Duzgun S, Aksoy A (2012) Application of spatial and non-spatial data analysis in determination of the factors that impact municipal solid waste generation rates in Turkey. Waste Manag 32:359–371. doi:10.1016/j.wasman.2011.10.017 CrossRefGoogle Scholar
  37. Khajuria A, Matsui T, Machimura T (2011) Economic growth decoupling municipal solid waste loads in terms of environmental Kuznets curve: symptom of the decoupling in India. J Sustain Dev 4:51–58. doi:10.5539/jsd.v4n3p51 CrossRefGoogle Scholar
  38. Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351:299–317. doi:10.1016/j.jhydrol.2007.12.014 CrossRefGoogle Scholar
  39. Lebersorger S, Beigl P (2011) Municipal solid waste generation in municipalities: quantifying impacts of household structure, commercial waste and domestic fuel. Waste Manag 31:1907–1915. doi:10.1016/j.wasman.2011.05.016 CrossRefGoogle Scholar
  40. Legates DR, McCabe GJ Jr (1999) Evaluating the use of “goodness of fit” measures in hydrologic and Hydroclimatic model validation. Water Resour Res 35:233–241. doi:10.1029/1998WR900018 CrossRefGoogle Scholar
  41. Mihail F-C (2013) Development of MSW collection services on regional scale: spatial analysis and urban disparities in north-east region, Romania. Acta Geogr Debrecina Landsc Environ Ser 7:13–18Google Scholar
  42. Noori R, Abdoli M, Ghazizade MJ, Samieifard R (2009) Comparison of neural network and principal component- regression analysis to predict the solid waste generation in Tehran. Iran J Publ Heal 38:74–84Google Scholar
  43. Noori R, Karbassi A, Salman Sabahi M (2010) Evaluation of PCA and gamma test techniques on ANN operation for weekly solid waste prediction. J Environ Manag 91:767–771. doi:10.1016/j.jenvman.2009.10.007 CrossRefGoogle Scholar
  44. OECD (2015a) OECD Statistics. http://stats.oecd.org/. Accessed 27 Aug 2015
  45. OECD (2015b) Municipal waste—OECD Environment Statistics-OECD iLibrary. http://www.oecd-ilibrary.org/environment/data/oecd-environment-statistics/municipal-waste_data-00601-en. Accessed 4 Mar 2015
  46. Perron P (2006) Dealing with structural breaks. In: Palgrave handbook of econometrics. pp 278–352Google Scholar
  47. Rimaityte I, Ruzgas T, Denafas G et al (2012) Application and evaluation of forecasting methods for municipal solid waste generation in an eastern-European city. Waste Manag Res 30:89–98. doi:10.1177/0734242X10396754 CrossRefGoogle Scholar
  48. Rosenblatt F (1961) Principles of neurodynamics: perceptrons and the theory of brain mechanisms. Cornell Aeronautical Laboratory, Inc., New York, USAGoogle Scholar
  49. Rumelhart DE, Hinton GE, Williams RJ (1986) Learning internal representations by error propagation. In: Rumelhart DE, McClelland JL (eds) Parallel distributed processing: Exlorations in the microstructure of cognition. MIT Press, Cambridge, MA, pp. 318–362Google Scholar
  50. Shamshiry E, Mokhtar MB, Abdulai A (2014) Comparison of artificial neural network (ANN) and multiple regression analysis for predicting the amount of solid waste generation in a tourist and tropical area—Langkawi Island. In: International Conference on Biological, Civil and Envirnonmental Engineering (BCEE-2014). Dubai (UAE), pp 161–166Google Scholar
  51. Specht DF (1991) A general regression neural network. IEEE Trans NEURAL NETWORKS 2:568–576CrossRefGoogle Scholar
  52. Sung TK, Chang N, Lee G (1999) Dynamics of modeling in data mining: interpretive approach to bankruptcy prediction. J Manag Inf Syst 16:63–85CrossRefGoogle Scholar
  53. Tomandl D, Schober A (2001) A modified general regression neural network (MGRNN) with new, efficient training algorithms as a robust “black box”-tool for data analysis. Neural Netw 14:1023–1034. doi:10.1016/S0893-6080(01)00051-X CrossRefGoogle Scholar
  54. UN (2003) Handbook of National Accounting: Integrated environmental and economic accounting 2003. United Nations, European Commission, International Monetary Fund, Organisation for Economic Co-operation and Development, World BankGoogle Scholar
  55. UN (2015) World population prospects—population Division—United Nations. http://esa.un.org/unpd/wpp/. Accessed 27 Aug 2015
  56. Verbeek M (2004) A guide to modern econometrics, 2nd edn. Wiley, RotterdamGoogle Scholar
  57. Walczak S, Cerpa N (1999) Heuristic principles for the design of artificial neural networks. Inf Softw Technol 41:107–117. doi:10.1016/S0950-5849(98)00116-5 CrossRefGoogle Scholar
  58. Wang W, Chau K, Xu D, Chen X-Y (2015) Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition. Water Resour Manag 29:2655–2675. doi:10.1007/s11269-015-0962-6 CrossRefGoogle Scholar
  59. Watson D (2013) Municipal Waste Management in Ireland. Eur Environ Agency :1–23Google Scholar
  60. Wooldridge JM (2013) Introductory econometrics—a modern approach, Fifth edit edn. South-Western Cengange learning, Mason, OH, USAGoogle Scholar
  61. World Bank (2015) Data | The World Bank. http://data.worldbank.org/. Accessed 27 Aug 2015

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Vladimir M. Adamović
    • 1
  • Davor Z. Antanasijević
    • 2
  • Mirjana Đ. Ristić
    • 3
  • Aleksandra A. Perić-Grujić
    • 3
  • Viktor V. Pocajt
    • 3
  1. 1.Institute for Technology of Nuclear and other Mineral Raw MaterialsBelgradeSerbia
  2. 2.Innovation Center of the Faculty of Technology and MetallurgyBelgradeSerbia
  3. 3.Faculty of Technology and MetallurgyUniversity of BelgradeBelgradeSerbia

Personalised recommendations