Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 1, pp 146–151 | Cite as

In vivo protective role against water contamination with cerium via chronic administration of omega 3

  • Asma Beltifa
  • Mohamed Ali Borgi
  • Anouar Ferieni
  • Abdelfettah Elfekih
  • Hedi Ben Mansour
  • Mohamed Sallah Allagui
Research Article

Abstract

In the present study, adult, healthy male Wistar rats (120 ± 10 g) were pre-treated by intragastric administration of cerium chloride (CeCl3) 10 mg/kg (BW) each day during 60 days. Control animal were treated with omega 3, a polyunsaturated fatty acid (ω-3), by an intragastric administration at 10 mg/kg of BW for 60 days. Our results showed that CeCl3-induced alterations in all tested oxidative stress markers. In fact, CeCl3-induced the increase the level of both the creatinine concentration and the expression of lactate dehydrogenase, alkaline phosphatase, and transaminase activities in serum. On the other hand, CeCl3 significantly increased the levels of lipid peroxidation in the renal and hepatic tissues. The capacity of CeCl3 to generate reactive oxygen species (ROS) could explain his ability to induce morphological alterations, such as centrilobular hemorrhage, hepatic necrosis, and vacuolization of the cytoplasm in hepatic tissues, and the atrophy of the glomerulus and dilatation of urinary space in renal tissues. However, omega 3, after gastric administration, reduced significantly the toxic effect caused by CeCl3 according to his high ability to scavenge ROS. The present study indicates that omega 3 is a significant compound with protective activity against intoxication with heavy metal, the cerium, and thus may be useful for chemoprevention.

Keywords

Omega 3 Heavy metal Protective effect Hepatic and renal toxicities Reactive oxygen species 

Notes

Acknowledgments

This research was funded by the Tunisian Ministry of Higher Education and Scientific Research.

References

  1. Clayden EC (1971) Practical section cutting and staining. Churchill Livingstone, EdinburghGoogle Scholar
  2. Haiquan Z, Jie C, Jingwei C, Zhe C, Yaling C, Guodong G, Renping H, Xiaolan G, Ling W, Fashui H (2012) Liver injury and its molecular mechanisms in mice caused by exposure to cerium chloride. Arch Environ Contam Toxicol 62:154–164CrossRefGoogle Scholar
  3. Haiquan Z, Jie H, Xiaohong Y, Xiaoyang Z, Lei S, Yuguan Z, Xuezi S, Suxin G, Qingqing S, Ling W, Fashui H (2013) Oxidative stress in the kidney injury of mice following exposure to lanthanides trichloride. Chemosphere 93:875–884CrossRefGoogle Scholar
  4. Haiquan Z, Zhe C, Jie C, Renping H, Yi C, Cui Y, Wang L, Fashui H (2011) The toxicological effects in brain of mice following exposure to cerium chloride. Biol Trace Elem Res 144:872–884CrossRefGoogle Scholar
  5. Innis SM (2005) Essential fatty acid transfer and fetal development. Placenta 26:70–75CrossRefGoogle Scholar
  6. Jie C, Na L, Jingwei C, Zhe C, Renping H, Qian Z, Fangfang W, Qingqing S, Suxing G, Xuezi S, Ling W, Fashui H (2012) Organ histopathological changes and its function damage in mice following long-term exposure to lanthanides chloride. Biol Trace Elem Res 145:361–368CrossRefGoogle Scholar
  7. Jie C, Na L, Zhe C, Renping H, Jingwei C, Wenhui S, Fashui H (2011) Splenocyte apoptotic pathway in mice following oral exposure to cerium trichloride. Chemosphere 83:612–617CrossRefGoogle Scholar
  8. Kawagoe M, Ishikawa K, Wang SC, Yoshikawa K, Arany S, Zhou XP, Wang JS, Ueno Y, Koizumi Y, Kameda T, Koyota S, Sugiyama T (2008) Acute effects on the lung and the liver of oral administration of cerium chloride on adult, neonatal and fetal mice. J Trace Elem Med Biol 22:59–65CrossRefGoogle Scholar
  9. Kazuo K, Rumi S, Tatsuya H, Masahiko S, Yoshiyuki S, Chiharu T, Junji K, Nobuo S, Nobumasa I, Seiichiro H (2005) Induction of hepatic metallothionein by trivalent cerium: role of interleukin 6. Biological and Pharmaceutical Bulle 28:1859–1863CrossRefGoogle Scholar
  10. Kilbourn TB (2003) The role of the lanthanides in applied catalysis. Journal of the Less-Common Metals 126:101–106CrossRefGoogle Scholar
  11. Koeberl C, Bayer PM (1992) Concentrations of rare earth elements in brain tissue and kidney stones determined by neutron activation analysis. Journal of Alloys and compound 180:636–670CrossRefGoogle Scholar
  12. Lewis R (2001) Hawley’s condensed chemical dictionary. John Wiley and Sons, Inc, NY, pp. 229–231Google Scholar
  13. Lowry OH, Rosenbrough NJ, Randall R (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  14. Masami K, Fujiko H, Shou CW, Yang L, Yasuharu U, Toshihiro S (2005) Orally administrated rare earth element cerium induces metallothionein synthesis and increases glutathione in the mouse liver. Life Sci 77:922–937CrossRefGoogle Scholar
  15. Masami K, Kiyoshi I, Shou-Cun W, Kiwamu Y, Szilvia A, Xiao-Ping Z, Jing-Shu W, Yasuharu U, Yukio K, Takashi K, Souichi K, Toshihiro S (2008) Acute effects on the lung and the liver of oral administration of cerium chloride on adult, neonatal and fetal mice. J Trace Elem Med Biol 22:59–65CrossRefGoogle Scholar
  16. Min F, Li N, Yuguan Z, Liu J, Gong X, Duan Y, Zhao X, Han W, Hong F (2011) Oxidative stress in the liver of mice caused by intraperitoneal injection with lanthanide. Biol Trace Elem Res 139:72–80CrossRefGoogle Scholar
  17. Na L, Yanmei D, Chao L, Fashui H (2010) The mechanism of CeCl3 on the activiation of alanine aminotransferase from mice. Biol Trace Elem Res 136:187–196CrossRefGoogle Scholar
  18. Parveen Y, Philip C, Calder P (2007) Fatty acids and immune function: new insights into mechanisms. Br J Nutr 98:S41–S45Google Scholar
  19. Reinhardt K, Winkler H (2002) Cerium mischmetal, cerium alloys, and cerium compounds. Ullmann’s encyclopedia of industrial chemistry 7:285–300Google Scholar
  20. Sauerwald TU, Hachey DL, Jensen CL, Chen H, Anderson RE, Heird WC (1997) Intermediates in endogenous synthesis of C22:6 omega 3 and C20:4 omega 6 by term and preterm infants. Pediatr Res 41:183–187CrossRefGoogle Scholar
  21. Scandalios JG (1993) Oxygen stress and superoxide dismutases. Plant Physiol 101:7–12CrossRefGoogle Scholar
  22. Serafini MJ, Almeida JA, Maiani ML (2000) Inhibition of human LDL lipid peroxidation by phenol-rich and their impact on plasma total antioxidant capacity in humans. Journal of Nutritional Biochemistry 11:585–590CrossRefGoogle Scholar
  23. Sprecher HW, Baykousheva SP, Luthria DL, Mohammed BS (1995) Differences in the regulation of biosynthesis of 20- versus 22-carbon polyunsaturated fatty acids. Prostaglandins Leukot Essent Fatty Acids 52:99–101CrossRefGoogle Scholar
  24. Vinod KG, Singh AK, Barkha G (2006) A cerium (III) selective polyvinyl chloride membrane sensor based on a Schiff base complex of N, N_-bis [2-(salicylideneamino) ethyl] ethane-1,2-diamine. Anal Chim Acta 575:198–204CrossRefGoogle Scholar
  25. Voss A, Reinhart M, Sankarappa S, Sprecher H (1991) The metabolism of 7, 10, 13, 16, 19-docosapentaenoic acid to 4, 7, 10, 13, 16, 19-docosahexaenoic acid in rat liver is independent of a 4-desaturase. The Journal of Biological 266:19995–20000Google Scholar
  26. Yagi K (1976) A simple fluorometric assay for lipoperoxide in blood plasma. Biochemical Medicine 15:212–216CrossRefGoogle Scholar
  27. Yumiko N, Yukari T, Yasuhide T, Tadashi S, Yoshio I (1997) Differences in behavior among the chlorides of seven rare earth elements administered intravenously to rats. Fundam Appl Toxicol 37:106–116CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Asma Beltifa
    • 1
    • 2
  • Mohamed Ali Borgi
    • 1
  • Anouar Ferieni
    • 3
  • Abdelfettah Elfekih
    • 3
  • Hedi Ben Mansour
    • 2
  • Mohamed Sallah Allagui
    • 3
  1. 1.Unité de Biochimie Macromoléculaire et Génétique, Faculté des sciences de GafsaGafsaTunisie
  2. 2.Unité de recherche analyses et procédés appliquées à l’environnement Institut Supérieur des Sciences appliquées et de technologie de MahdiaUniversité de MonastirMonastirTunisie
  3. 3.Faculté des Sciences de Sfax, Département des Sciences de la VieLaboratoire d’Eco Physiologie AnimaleSfaxTunisie

Personalised recommendations