Skip to main content

Advertisement

Log in

A tabulated review on distribution of heavy metals in various plants

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Plants are a rich source of elements, and knowledge of their elemental composition determines their use for various purposes, especially for food and medicine. Therefore, it is necessary to create a database of the elemental composition of plants. The present review focuses on the concentration of various heavy metals as reported by various workers from time to time by using different sophisticated techniques. Cluster analysis was applied on the basis of mean values of heavy metals in plants. Co, Cu, and Cr have similar proximities. Cluster analysis was also applied to different families on the basis of their heavy metal contents. Elaeagnaceae, Adoxaceae, Thymelaeaceae, Cupressaceae, and Acoraceae had close proximities with each other. First three components of principal component analysis explained 95.7 % of the total variance. Factor analysis explained four underlying factors for heavy metal analysis. Factor 1 explained for 26.5 % of the total variance and had maximum loadings on Co, Cu, and Cr. Of the total variance, 21.7 % was explained by factor 2 and had maximum loadings on Zn and Cd. Factor 3 accounted for 19.2 % of the total variance and had maximum loadings on Ni and Pb. Mn had maximum loading on factor 4. The mean values of heavy metals as listed in this paper are Cu (18.7 μg/g dw), Mn (99.67 μg/g dw), Cr (22.9 μg/g dw), Co (19.7 μg/g dw), As (1.25 μg/g dw), Hg (0.17 μg/g dw), Zn (94.0 μg/g dw), Pb (6.93 μg/g dw), Cd (26.9 μg/g dw), Ni (19.9 μg/g dw), and Sb (0.25 μg/g dw).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abou-Arab AAK, Donia MAA (2000) Heavy metals in Egyptian spices and medicinal plants and the effect of processing on their levels. J Agri Food Chem 48:2300–2304

    Article  CAS  Google Scholar 

  • Abugassa IO, Bashir AT, Doubali K, Etwir RH, Abu-Enawel M, Abugassa SO (2008) Characterization of trace elements in medicinal herbs by instrumental neutron activation analysis. J Radioanal Nucl Ch 278:559–563

    Article  CAS  Google Scholar 

  • Abulude FO (2007) Phytochemical screening and mineral contents of leaves of some Nigerian woody plants. Res J Phytochem 1:33–39

    Article  CAS  Google Scholar 

  • Agyekum AA, Akuamoa F, Kottoh ID, Asare IK, Danquah JO, Armah D (2015) Evaluation of trace metal contents of three local spices on Accra markets. Int J Nutr Food Sci 4:681–687

    Article  Google Scholar 

  • Ajasa AMO, Bello MO, Ibrahim AO, Ogunwande IA, Olawore NO (2004) Heavy trace metals and macronutrients status in herbal plants of Nigeria. Food Chem 85:67–71

    Article  CAS  Google Scholar 

  • Akpofure, Rukeh R (2012) Uptake of heavy metals by Okro (Hibiscus esculentus) grown on abandoned dump sites in Effurun, Nigeria. J Emerging Trends Engineer Appl Sci 3:640–644

    Google Scholar 

  • Aldjain IM, Al-Whaibi MH, Al-Showiman SS, Siddiqui MH (2011) Determination of heavy metals in the fruit of date palm growing at different locations of Riyadh. Saudi J Biol Sci 18:175–180

    Article  CAS  Google Scholar 

  • Aliyu AB, Musa AM, Oshanimi JA, Ibrahim HA, Oyewale AO (2008) Phytochemical analysis and mineral elements composition of some medicinal plants of northern Nigeria. Niger J Pharm Sci 7:119–125

    Google Scholar 

  • Al-Taisan WA (2009) Suitability of using Phragmites australis and Tamarix aphylla as vegetation filters in industrial areas. Am J Env Sci 6:740–747

    Article  Google Scholar 

  • Alvarez-Fernandez A, Diaz-Benito P, Abadia A, Lopez-Millan AF, Abadia J (2014) Metal species involved in long distance metal transport in plants. Front Plant Sci 5:1–20

    Article  Google Scholar 

  • Amin N, Hussain A, Alamzeb S, Begum S (2013) Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, District Mardan, Pakistan. Food Chem 136:1515–1523

    Article  CAS  Google Scholar 

  • Anderson RA (1997) Nutritional factors influencing the glucose/insulin system: chromium. J Am Coll Nutr 16:404–410

    Article  CAS  Google Scholar 

  • Armah YS, Nyarko BJB, Akaho EHK, Kyere AWK, Osae S, Oppong-Boachie K (2002) Multielemental analysis of some traditional plant medicines used in Ghana. J Trace Microprobe Tech 20:419–427

    Article  CAS  Google Scholar 

  • Arpadjan S, Celik G, Taskesen S, Gucer S (2008) Arsenic, cadmium and lead in medicinal herbs and their fractionation. Food Chem Toxicol 46:2871–2875

    Article  CAS  Google Scholar 

  • Arukwe U, Amadi BA, Duru MKC, Agomuo EN, Adindu EA, Odika PC, Lele KC, Egejuru L, Anudike J (2012) Chemical composition of Persea americana leaf, fruit and seed. Int Res Reviews Appl Sci 11:346–349

    Google Scholar 

  • Ashfaq A, Khan ZI, Bibi Z, Ahmad K, Ashraf M, Mustafa I, Akram NA, Perveen R, Yasmeen S (2015) Heavy metals uptake by Cucurbita maxima grown in soil contaminated with sewage water and its human health implications in Peri-urban areas of Sargodha City. Pak J Zool 47:1051–1058

    CAS  Google Scholar 

  • Barcan VS, Kovnatsky EF, Smetannikova MS (1998) Absorption of heavy metals in wild berries and edible mushrooms in an area affected by smelter emissions. Water Air Soil Poll 103:173–195

    Article  CAS  Google Scholar 

  • Bardarov K, Mihaylova V, Djingova R (2015) Study on the elemental composition of Clinopodium vulgare L. medicinal plant collected from different regions of Bulgaria. Bulg J Agric Sci 21:145–152

    Google Scholar 

  • Barua CC, Bora M, Saikia BN, Hazarika M, Barua IC (2015) Quantitative analysis of proximate and mineral composition of a few important medicinal plants of north east region. Int J Appl Biol Pharma Techn 6:188–193

    CAS  Google Scholar 

  • Basgel S, Erdemoglu SB (2006) Determination of mineral and trace elements in some medicinal herbs and their infusions consumed in Turkey. Sci Total Environ 359:82–89

    Article  CAS  Google Scholar 

  • Baye H, Hymete A (2010) Lead and cadmium accumulation in medicinal plants collected from environmentally different sites. Bull Envir Contam Toxicol 84:197–201

    Article  CAS  Google Scholar 

  • Beaver MB, Beaver JR, Mendenhall W (2012) Introduction to probability and statistics. Cengage Learning, New Delhi

    Google Scholar 

  • Bhat R, Kiran K, Arun AB, Karim AA (2010) Determination of mineral composition and heavy metal content of some nutraceutically valued plant products. Food Anal Method 3:181–187

    Article  Google Scholar 

  • Birhanu WT, Chaueby AK, Teklemariamc TT, Dewud BBM, Funtua II (2015) Application of instrumental neutron activation analysis (INAA) in the analysis of essential elements in six endemic Ethiopian medicinal plants. Int J Sci Basic Appl Res 19:213–227

    Google Scholar 

  • Bolaños D, Marchevsky EJ, Camiña JM (2016) Elemental analysis of amaranth, chia, sesame, linen, and quinoa seeds by ICP-OES: assessment of classification by chemometrics. Food Anal Method 9:477–484

    Article  Google Scholar 

  • Boostani H, Mahmoodi A, Farrokhnejad E (2016) Determination of essential nutrients in some indigenous pharmacological plants growing in Fars Province, Iran. J Chem Health Risks 6:105–112

    CAS  Google Scholar 

  • Bothe H (2011) Plants in heavy metal soils. In: Sherameti I, Varma A (eds) Detoxification of heavy metals. Soil Biol, pp 35–57

  • Broadhurst CL (1997) Balanced intakes of natural triglycerides for optimum nutritional evolutionary and phytochemical perspective. Med Hypoth 49:247–261

    Article  CAS  Google Scholar 

  • Bumbalova A, Komova M, Dejmkova E (1992) Identification of elements in plant drugs and their water infusion using X-ray fluorescence analysis. J Radioan Nucl Ch Lett 166:55–62

    Article  CAS  Google Scholar 

  • Byreddy SR, Dessalegn F, Sheik AS (2013) Trace element analysis of some indigenous medicinal plants of Ethiopia by PIXE. Int J Eng Sci Technol 3:633–637

    Google Scholar 

  • Calle IDL, Costas M, Cabaleiro N, Lavilla I, Bendicho C (2013) Fast method for multielemental analysis of plants and discrimination according to the anatomical part by total reflection X-ray fluorescence spectrometry. Food Chem 138:234–241

    Article  CAS  Google Scholar 

  • Chang CY, Yu HY, Chen JJ, Li FB, Zhang HH, Liu CP (2014) Accumulation of heavy metals in leaf vegetables from agricultural soils and associated potential health risks in the Pearl River Delta, South China. Environ Monit Assess 186:1547–1560

    Article  CAS  Google Scholar 

  • Chawla A (2008) Landscape ecology of Kinnaur region of Western Himalaya using remote sensing. Ph.D. thesis

  • Choudhury RP, Kumar A, Garg AN (2006) Analysis of Indian mint (Mentha spicata) for essential, trace and toxic elements and its antioxidant behavior. J Pharm Biomed Anal 41:825–832

    Article  CAS  Google Scholar 

  • Chrzan A (2015) Necrotic bark of common pine (Pinus sylvestris L.) as a bioindicator of environmental quality. Environ Sci Pollut Res 22:1066–1071

    Article  CAS  Google Scholar 

  • Chuparina EV, Azovsky MG (2016) Elemental analysis of aquatic plants by X-ray fluorescence. Anal Lett 49:1963–1973

    Article  CAS  Google Scholar 

  • Danh LT, Troung R, Mammucari T, Tran Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytochem 11:664–691

    Article  CAS  Google Scholar 

  • Daniel VN, Daniang IE, Nimyel ND (2011) Phytochemical analysis and mineral elements composition of Ocimum basilicum obtained in JOS Metropolis, Plateau State, Nigeria. Int J Engin Tech 11:135–137

    Google Scholar 

  • Debnath M, Khandelwal M, Lal P, Jain R (2014) Evaluation of heavy metal distribution and antibacterial activities of medicinal plants Tinospora cordifolia, Ocimum sanctum and Piper nigrum. Int J Pharm Sci Drug Res 6:229–234

    Google Scholar 

  • Debrah SK, Ayivor JE, Denutsui D, Kwofie AB, Forson A, Nuviadenu C (2011) Elemental evaluation of some herbal plants used in Ghana using INAA. Der Pharma Chemica 3:202–207

    CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Stoyanova Z, Holzer R, Feller U (2004) Biochemical changes in barley plants after excessive supply of copper and manganese. Environ Exp Bot 52:253–266

    Article  CAS  Google Scholar 

  • Deshmukh S, Jadhav V (2014) Bromatological and mineral assessment of Clitoria ternatea Linn leaves. Int J Pharm Pharm Sci 6:244–246

    Google Scholar 

  • Dhunna G (2005) Trace element analysis of some plants at Amritsar. M.Sc thesis

  • Dingjian C (2012) Contents of heavy metals in lotus seed from REEs mining area. J Saudi Chem Soc 16:175–176

    Article  CAS  Google Scholar 

  • Dogan Y, Ugulu I, Baslar S (2010) Turkish Red Pine as a Biomonitor: a comparative study of the accumulation of trace elements in the needles and bark. Ekoloji 19:88–96

    Article  CAS  Google Scholar 

  • Dogan Y, Baslar S, Ugulu I (2014) A study on detecting heavy metal accumulation through biomonitoring: content of trace elements in plants at Mount Kazdagi in Turkey. Appl Ecol Environ Res 3:627–636

    Article  Google Scholar 

  • Dubale AA, Chandravanshi BS, Gebremariam KF (2015) Levels of major and trace metals in the leaves and infusions of Croton macrostachyus. Bull Chem Soc Ethiop 29:11–26

    Article  CAS  Google Scholar 

  • Dzomba P, Chayamiti T, Togarepi E (2012) Heavy metal content of selected raw medicinal plant materials: implication for patient health. Bull Envir Pharm Life Sci 1:28–33

    Google Scholar 

  • Ebrahim AM, Eltayeb MH, Khalid H, Mohamed H, Abdalla W, Grill P, Michalke B (2012) Study on selected trace elements and heavy metals in some popular medicinal plants from Sudan. J Nat Med 66:671–679

    Article  CAS  Google Scholar 

  • Egorova IN, Neverova OA (2013) Heavy metal concentration in the herbal medicinal products of Hippophae rhamnoides L. which grows on refuse dumps of the Kuznetsk coal basin surface mines. World Appl Sci J 27:497–500

    Google Scholar 

  • El-Sweify FH, El-Amir MA, Mostafa M, Ramadan HE, Rashad GM (2016) Simultaneous multi-element determination in different seed samples of Dodonaea viscose hopseed using instrumental neutron activation analysis. Radiochim Acta 104:211–220

    Article  CAS  Google Scholar 

  • Ezhilselvan PT, Mubarak H, Vetriselvi R (2016) Analytical techniques applied on siddha medicinal plant Alpinia officinarum Hance (Chitrarathai) for standardization aspects. Int J Recent Sci Res 7:10837–10841

  • Galal MT, Shehata SH (2015) Bioaccumulation and translocation of heavy metals by Plantago major L. grown in contaminated soils under the effect of traffic pollution. Ecol Indic 48:244–251

    Article  CAS  Google Scholar 

  • Gâlea C, Hancu G, Csiszer A, Jeszenszky CM, Barabás E (2015) Determination of mineral element content of Pelargonium roseum plant by ICP-MS. Maced Pharm Bull 61:1–8

    Google Scholar 

  • Gandhi D, Mehta P (2014) Pharmacognostical study and quality control parameters of Dillenia indica Linn. and Dillenia pentagyna Roxb.: a boon of ethnomedicinal herbs of India. Int J Pharmacogn Phytochem Res 6:573–579

    Google Scholar 

  • Garg M, Ravikant (2014) Screening of Indian Withania plant and marketed products for trace elements, heavy metals for quality and efficacy. J Pharm Phytochem 5:66–68

    Google Scholar 

  • Giacomino A, Malandrino M, Colombo L, Miaglia S, Maimone P, Blancato S, Conca E, Abollino O (2016) Metal content in dandelion (Taraxacum officinale) leaves: influence of vehicular traffic and safety upon consumption as food. J Chem 2016:1–9

    Article  CAS  Google Scholar 

  • Glew RH, VanderJagt DL, Lockett C, Grivetti LE, Smith GC, Pastuszyn A, Millson AM (1997) Amino acid, fatty acid, and mineral composition of 24 indigenous plants of Burkina Faso. J Food Comp Anal 10:205–217

    Article  CAS  Google Scholar 

  • Golubović T, Blagojević B (2013) Concentration of heavy metals in medicinal plants in Serbia—potential health risk. Reporting for Sustainability:449–453

  • Gothberg A, Greger M, Bengtsson BE (2002) Accumulation of heavy metals in water spinach (Ipomoea aquatic) cultivated in the Bangkok region, Thailand. Environ Toxicol Chem 21:1934–1939

    Article  CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal binding peptides of plants, are synthesized from glutathione by a specific γ-glutamyl-cysteine dipeptidyl transpeptidase phytochelatins synthase. Proc Natl Acad Sci U S A 86:6838–6842

    Article  CAS  Google Scholar 

  • Guerrero JLG, Gimenez Martnez JJ, Isasa MET (1998) Mineral nutrient composition of edible wild plants. J Food Comp Anal 11:322–328

    Article  Google Scholar 

  • Gupta J, Gupta A (2015) Comparative trace and heavy metal analysis of Rauwolfia serpentine using atomic absorption spectroscopy. Int J Curr Res Chem Pharma Sci 2:58–63

    Google Scholar 

  • Gupta J, Gupta A (2016) Determination of trace metals in the leaves of Rauwolfia serpentina by using atomic absorption spectroscopy. Int J Chem Stud 4:94–96

    Google Scholar 

  • Gupta J, Gupta A, Gupta AK (2014) Determination of trace metals in the stem bark of Moringa oleifera Lam. Int J Chem Stud 2:39–42

    Google Scholar 

  • Gurav N, Solanki B, Pandya K, Patel P (2011) Physiochemical and antimicrobial activity of single herbal formulation-capsule, containing Emblica officinalis Gaertn. Int J Pharm Pharm Sci 3:383–386

    CAS  Google Scholar 

  • Hailemarian T, Aregahegn A, Bekele T, Madhusudhan A (2015) Investigation of the levels of selected metals in edible and medicinal fruits grown in Dilla, Ethiopia. Res J Chem Environ Sci 3:44–53

    Google Scholar 

  • Hajar EWI, Sulaiman AZB, Sakinah AMM (2014) Assessment of heavy metals tolerance in leaves, stems and flowers of Stevia rebaudiana plant. Procedia Environ Sci 20:386–393

    Article  CAS  Google Scholar 

  • Harmens H, Koevoets PLM, Verkleij JAC, Ernst WHO (1994) The role of low molecular weight organic acids in mechanisms of increased zinc tolerance in Silene vulgaris (Moench) Garcke. New Phytol 126:615–621

    Article  CAS  Google Scholar 

  • Hina B, Rizwani GH (2014) Spectrophotometric analysis of heavy metal in two miraculous medicinal herbs belonging to family piperaceae. Spatula DD 4:199–206

    Article  Google Scholar 

  • Hristozkova M, Genevaa M, Stancheva I, Boychinova M, Djonov E (2016) Contribution of arbuscular mycorrhizal fungi in attenuation of heavy metal impact on Calendula officinalis development. Appl Soil Ecol 101:57–63

    Article  Google Scholar 

  • Hurley LS (1976). Manganese and other trace elements. In: Present knowledge in nutrition (nutrition reviews), fourth edn. The Nutrition Foundation, Inc. New York, Washington

  • Hussain J, Khan FU, Muhammad RUZ, Rehman NU, Shinwari ZK, Khan IU, Zohaib M, Din IU, Hussain SM (2011a) Nutrient evaluation and elemental analysis of four selected medicinal plants of Khyber Pakhtoon Khwa, Pakistan. Pak J Bot 43:427–434

    CAS  Google Scholar 

  • Hussain I, Khattak MR, Khan FA, Rehman IU, Khan FU, Khan FU (2011b) Analysis of heavy metals in selected medicinal plants from Dir, Swat and Peshawar Districts of Khyber Pakhtunkhwa. J Chem Soc Pak 33:495–498

    CAS  Google Scholar 

  • Indrayan AK, Sharma S, Durgapal D, Kumar N, Kumar M (2005) Determination of nutritive value and analysis of mineral elements for some medicinally valued plants from Uttaranchal. Curr Sci 89:1252–1255

    CAS  Google Scholar 

  • Ipeaiyeda AR, Dawodu M (2014) Assessment of toxic metal pollution in soil, leaves and tree barks: bio-indicators of atmospheric particulate deposition within a university community in Nigeria. Adv Ecol Sci 6:101–110

    Google Scholar 

  • Iqbal H, Khattak B, Ayaz S, Rehman A, Ishfaq M, Abbas MN, Malik MS, Wahab A, Imran MS (2013) Pollution based study of heavy metals in medicinal plants Aloe vera and Tamarix aphylla. J Appl Pharm Sci 3:054–058

    Google Scholar 

  • Irshad M, Ahmad S, Pervez A, Inoue M (2015) Phytoaccumulation of heavy metals in natural plants thriving on wastewater effluent at Hattar industrial estate, Pakistan. Int J Phytoremediat 17:154–158

    Article  CAS  Google Scholar 

  • Ishaq M, Rehman A, Adnan M, Ullah N, Ahmad I, Aamir M (2013) Comparative study of heavy metals in Albizia lebbeck, collected from different environmental sites. Int J Pharm Sci Res Res 20:5–9

    CAS  Google Scholar 

  • Jia L, Lilt Y', Le YZ (2011) Determination of wholesome elements and heavy metals in safflower (Carthamus tinctorius L.) from Xinjiang and Henan by ICP-MS/ICP-AES. J Pharm Anal 1:100-103

    Article  CAS  Google Scholar 

  • Jing Y, Cui H, Li T, Zhao Z (2014) Heavy metal accumulation characteristics of Nepalese alder (Alnus nepalensis) growing in a lead-zinc spoil heap, Yunnan, south-western China. iForest 7:204–208

    Article  Google Scholar 

  • Joshi S, Mishra D, Bisht G, Khetwal KS (2013) Mineral composition and antimicrobial activity of Swertia cordata Clarke aerial parts and roots. Indian J Nat Prod Res 4:273–277

    Google Scholar 

  • Kabelitz L (1998) Heavy metals in herbal drugs. Eur J Herbal Med 4:1–9

    Google Scholar 

  • Kalny P, Fijałek Z, Daszczuk A, Ostapczuk P (2007) Determination of selected microelements in polish herbs and their infusions. Sci Total Environ 381:99–104

    Article  CAS  Google Scholar 

  • Kandziora M, Burkhard B, Müller F (2013) Interactions of ecosystem properties, ecosystem integrity and ecosystem service indicators e a theoretical matrix exercise. Ecol Indic 28:54–78

    Article  Google Scholar 

  • Kandziora-Ciupa M, Ciepal R, Nadgorska-Socha A, Barczyk G (2016) Accumulation of heavy metals and antioxidant responses in Pinus sylvestris L. needles in polluted and non-polluted sites. Ecotoxicology 25:970–981

    Article  CAS  Google Scholar 

  • Kanwar MK, Bhardwaj R, Chowdhary SP, Arora P, Sharma P, Kumar S (2013) Isolation and characterization of 24-Epibrassinolide from Brassica juncea L. and its effects on growth, Ni ion uptake, antioxidant defense of Brassica plants and in vitro cytotoxicity. Acta Physiol Plant 35:1351–1362

    Article  CAS  Google Scholar 

  • Kara D (2009) Evaluation of trace metal concentrations in some herbs and herbal teas by principal component analysis. Food Chem 114:347–354

    Article  CAS  Google Scholar 

  • Kloke A, Sauerback DR, Vetter H (1984) The contamination of plants and soils with heavy metals and the transport of metals in terrestrial food chains. In: Nriagu JO (ed) Changing metal cycles and human health. Springer-Verlag, Berlin

    Google Scholar 

  • Kobaissi AN, Kanso AA, Kanbar HJ (2014) Translocation of heavy metals in Zea mays L. treated with wastewater and consequences on morphophysiological aspects. Rev Int Contam Ambie 30:297–305

    CAS  Google Scholar 

  • Korzeniowska J, Panek E (2010) Heavy metal (Cd, Cr, Cu, Ni, Pb, Zn) concentrations in spruce Picea abies L. along the roads of various traffic density in the Podhale Region, Southern Poland. Geo Env Eng 4:89–96

    Google Scholar 

  • Kulhari A, Sheorayan A, Bajar S, Sarkar S, Chaudhury A, Kalia RK (2013) Investigation of heavy metals in frequently utilized medicinal plants collected from environmentally diverse locations of north western India. SpringerPlus 2:1–9

    Article  CAS  Google Scholar 

  • Kumar NJI, Soni H, Kumar RN (2009a) Characterization of heavy metals in vegetables using inductive coupled plasma analyzer (ICPA). J Appl Sci Environ Manage 11:75–79

    Google Scholar 

  • Kumar NJI, Soni H, Kumar RN, Bhatt I (2009b) Hyperaccumulation and mobility of heavy metals in vegetable crops in India. J Agric Environ 10:29–38

    Google Scholar 

  • Lal K, Yadav RK, Kaur R, Bundela DS, Khan MI, Chaudhary M, Meena RL, Dar SR, Singh G (2013) Productivity, essential oil yield, and heavy metal accumulation in lemon grass (Cymbopogon flexuosus) under varied wastewater–groundwater irrigation regimes. Ind Crop Prod 45:270–278

    Article  CAS  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79

    Article  CAS  Google Scholar 

  • Limmatvapirat C, Limmatvapirat S, Charoenteeraboon J, Wessapan C, Kumsum A, Jenwithayaamornwech S, Luangthuwapranit P (2015) Comparison of eleven heavy metals in Moringa oleifera Lam. products. Indian J Pharm Sci 77:485–490

    Article  CAS  Google Scholar 

  • Lokhande R, Singare P, Andhale M (2010) Study on mineral content of some ayurvedic Indian medicinal plants by instrumental neutron activation analysis and AAS techniques. Health Sci J 4:157–168

    Google Scholar 

  • Lorestani B, Cherqhi M, Yousefi N (2012) The potential of phytoremediation using hyperaccumulator plants: a case study at a lead-zinc mine site. Int J Phytoremediat 14:786–795

    Article  CAS  Google Scholar 

  • Mahadkar S, Valvi S, Rathod V (2012) Nutritional assessment of some selected wild edible plants as a good source of mineral. Asia J Plant Sci Res 2:468–472

    CAS  Google Scholar 

  • Maharia RS, Dutta RK, Acharya R, Reddy AVR (2010) Heavy metal bioaccumulation in selected medicinal plants collected from Khetri copper mines and comparison with those collected from fertile soil in Haridwar. Indian J Environ Sci Health B 45:174–181

    Article  CAS  Google Scholar 

  • Mahlangeni NT, Moodley R, Jonnalagadda SB (2016) Heavy metal distribution in Laportea peduncularis and growth soil from the eastern parts of KwaZulu-Natal. South Africa Environ Monit Assess doi. doi:10.1007/s10661-015-5044-y

    Google Scholar 

  • Maiga A, Diallo D, Bye R, Paulsen BS (2005) Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agri Food Chem 53:2316–2321

    Article  CAS  Google Scholar 

  • Maleki A, Zarasvand MA (2008) Heavy metals in selected edible vegetables and estimation of their daily intake in Sanandaj, Iran. Southeast Asian J Trop Med Public Health 39:335–340

    CAS  Google Scholar 

  • Malik J, Szakova J, Drabek O, Balik J, Kokoska L (2008) Determination of certain micro and macroelements in plant stimulants and their infusions. Food Chem 111:520–525

    Article  CAS  Google Scholar 

  • Marschner H (1995) Mineral nutrition of higher plants. Academic Press, Cambridge

    Google Scholar 

  • Matache ML, Marin C, Rozylowicz L, Tudorache A (2013) Plants accumulating heavy metals in the Danube river wetlands. J Environ Health Sci Eng 11:1–7

    Article  CAS  Google Scholar 

  • Mbatchou VC, Sackey J, Sackey I (2011) Proximate and chemical compositions of leaf samples of Burkea africana from mole national park, Ghana. Canadian J Pure Appl Sci 5:1493–1500

    CAS  Google Scholar 

  • Melo LCA, da Silva EB, Alleoni LRF (2014) Transfer of cadmium and barium from soil to crops grown in tropical soils. R Bras Ci Solo 38:1939–1949

    Article  CAS  Google Scholar 

  • Mendoza-Cozatl DG, Jobe TO, Hauser F, Schroeder JI (2011) Long distance transport, vacuolar sequestration, tolerance and transcriptional responses induced by cadmium and arsenic. Curr Opin Plant Biol 14:554–562

    Article  CAS  Google Scholar 

  • Merlos MA, Michaleka P, Kryštofovaa O, Zitkaa O, Adama V, Kizeka R (2014) The role of phytochelatins in plant and animals: a review. J Metallomics Nanotechnol 4:22–27

    Google Scholar 

  • Mganga N, Manoko MLK, Rulangaranga ZK (2011) Classification of plants according to their heavy metal content around North Mara gold mine, Tanzania: implication for phytoremediation. Tanz J Sci 37:110–119

    Google Scholar 

  • Migeon A, Richaud P, Guinet F, Chalot M, Blaudez D (2009) Metal accumulation by woody species on contaminated sites in the north of France. Water Air Soil Pollut 204:89–101

    Article  CAS  Google Scholar 

  • Mihaljev Z, Balo MI, Upi JS (2014) Levels of some micro elements and essential heavy metals in herbal teas in Serbia. Acta Pol Pharm 71:385–391

    Google Scholar 

  • Mirecki N, Agic R, Sunic L, Milenkovic L, Ilic S (2015) Transfer factor as indicator of heavy metals content in plants. Fresenius Environ Bull 24:4212–4219

    CAS  Google Scholar 

  • Mlitan AM, Sasi MS, Alkherraz AM (2014) Proximate and minor mineral content in some selected basil leaves of Ocimum gratissimum L, in Libya. Int J Chem Engin Appl 5:502–505

    CAS  Google Scholar 

  • Morabad RB, Patil SJ, Tapash RR (2013) First series transition elemental analysis in some therapeutically important medicinal plants by AAS method. J Mater Environ Sci 4:171–176

    CAS  Google Scholar 

  • Muhammad S, Shah MT, Khan S, Saddique U, Gul N, Khan MU, Malik RN, Farooq M, Naz A (2013) Wild plant assessment for heavy metal phytoremediation potential along the mafic and ultramafic terrain in Northern Pakistan. Bio Med Res Int 2013:1–9

    Google Scholar 

  • Narang U, Bhardwaj R, Thukral AK, Garg SK (2003) Mercury content in water bodies and Eichhornia crassipes (Mart.) Solms plants at Amritsar, India. Proc. 7th Inter. Conf. on the Biogeochem. of Trace Elem 32–33

  • Narang U, Bhardwaj R, Garg SK, Thukral AK (2011) Phytoremediation of mercury using Eichhornia crassipes (Mart.) Solms. Int J Env Waste Manag:92–105

  • Narendhirakannan RT, Subramanian S, Kandaswamy M (2005) Mineral content of some medicinal plants used in the treatment of diabetes mellitus. Biol Trace Elem Res 103:109–114

    Article  CAS  Google Scholar 

  • Nazir R, Khan M, Masab M, Rehman HU, Rauf NU, Shahab S, Ameer N, Sajed M, Ullah M, Rafeeq M, Shaheen Z (2015) Accumulation of heavy metals (Ni, Cu, Cd, Cr, Pb, Zn, Fe) in the soil, water and plants and analysis of physico-chemical parameters of soil and water collected from Tanda Dam kohat. J Pharm Sci Res 7:89–97

    CAS  Google Scholar 

  • Nečemer M, Kump P, Ščančar J, Jaćimović R, Simčič J, Pelicon P, Budnar M, Jeran Z, Pongrac P, Regvar M, Vogel-Mikus K (2008) Application of X-ray fluorescence analytical techniques in phytoremediation and plant biology studies. Spectrochim Acta Part B 63:1240–1247

    Article  CAS  Google Scholar 

  • Neda GD, Rabeta MS, Ong MT (2013) Chemical composition and anti-proliferative properties of flowers of Clitoria ternatea. Int Food Res J 20:1229–1234

    CAS  Google Scholar 

  • Nedjimi B, Beladel B (2015) Assessment of some chemical elements in wild Shih (Artemisia herba-alba Asso) using INAA technique. J App Res Med Arom Plants 2:203–205

    Google Scholar 

  • Nemba RM, Emadak A, Mouzong GC, Nemba CE (2012) Qualitative and quantitative assessment of mineral elements in the leaves of Corchorus fascicularis and Corchorus olitorius harvested in Cameroon. J Curr Chem Pharm Sc 2:17–23

    CAS  Google Scholar 

  • Nwoko CO, Mgbeahuruike L (2011) Heavy metal contamination of ready-to-use herbal remedies in south eastern Nigeria. Pak J Nutr 10:959–964

    Article  CAS  Google Scholar 

  • Odjegba VJ, Fasidi IO (2007) Phytoremediation of heavy metals by Eichhornia crassipes. Environmentalist 27:349–355

    Article  Google Scholar 

  • Odoemelam SA, Ukpe RA (2008) Heavy meal decontamination of polluted soils using Bryophyllum pinnatum. Afr J Biotechnol 7:4301–4303

    CAS  Google Scholar 

  • Okatch H, Ngwenya B, Raletamo KM, Andrae-Marobela K (2012) Determination of potentially toxic heavy metals in traditionally used medicinal plants for HIV/AIDS opportunistic infections in Ngamiland District in Northern Botswana. Anal Chim Acta 730:42–48

    Article  CAS  Google Scholar 

  • Okedeyi OO, Dube S, Awofolu OR, Nindi MM (2014) Assessing the enrichment of heavy metals in surface soil and plant (Digitaria eriantha ) around coal-fired power plants in South Africa. Environ Sci Pollut Res 21:4686–4696

    Article  CAS  Google Scholar 

  • Okwu DE (2005) Phytochemicals, vitamins and mineral contents of two Nigerian medicinal plants. Int J Med Adance Sci 4:375–381

    Google Scholar 

  • Okwu DE, Josiah C (2006) Evaluation of the chemical composition of two Nigerian medicinal plants. Afri J Biotech 5:357–361

    CAS  Google Scholar 

  • Olatunji OS, Osibanjo O, Fatoki OS, Ximba BJ, Opeolu BO (2016) Selected heavy metals as indices of atmospheric pollution in African locust bean (Parkia biglobosa) tree barks. Am J Env Sci 12:48–54

    Article  CAS  Google Scholar 

  • Olowoyo JO, Okedeyi OO, Mkolo NM, Lion GN, Mdakane STR (2012) Uptake and translocation of heavy metals by medicinal plants growing around a waste dump site in Pretoria, South Africa. S Afr J Bot 78:116–121

    Article  CAS  Google Scholar 

  • Oti WO (2015) Bioaccumulation factors and pollution indices of heavy metals in selected fruits and vegetables from a derelict mine and their associated health implications. Int J Env Sust 4:15–23

    Google Scholar 

  • Özcan MM (2006) Determination of the mineral compositions of some selected oil-bearing seeds and kernels using inductively coupled plasma atomic emission spectrometry (ICP-AES). Grasas Aceites 57:211–218

    Google Scholar 

  • Page V, Feller U (2015) Heavy metals in crop plants: transport and redistribution processes on the whole plant level. Agronomy 5:447–463

    Article  Google Scholar 

  • Patel KS, Sharma R, Dahariya NS, Yadav A, Blazhev B, Matini L, Hoinkis J (2015) Heavy metal contamination of tree leaves. Am J Anal Chem 6:687–693

    Article  CAS  Google Scholar 

  • Pawar SG, Kamble VM (2013) Quantitative assessment of mineral composition of Aloe vera (L.) Burm.f. leaves by ICP-MS and CHNS analyzer. Int J Sci Res 4:1372–1376

    Google Scholar 

  • Peer WA, Baxter IR, Richards EL, Freeman JL, Murphy AS (2005) Phytoremediation and hyperaccumulator plants. In: Tamas MJ, Martinoia E (eds) Molecular biology of metal homeostasis and detoxification. Top Curr Genet pp 299–340

  • Pilon-Smits EAH, Quinn CF, Tapken W, Malagoli M, Schiavon M (2009) Physiological functions of beneficial elements. Curr Opin Plant Biol 12:267–274

    Article  CAS  Google Scholar 

  • Poykiç R, Maenpaa A, Peramaki P, Niemela M, Valimaki I (2005) Heavy metals (Cr, Zn, Ni, V, Pb, Cd) in Lingonberries (Vaccinium vitis-idaea L.) and assessment of human exposure in two industrial areas in the Kemi-Tornio region, Northern Finland. Arch Environ Contam Toxicol 48:338–343

    Article  CAS  Google Scholar 

  • Prakash NKU, Deepa S, Sripriya N, Bhuvaneswari S (2014) Quality assessment for the presence of heavy metals in herbal materials from the markets of Chennai, India. Int J Pharm Pharm Sci 6:574–578

    CAS  Google Scholar 

  • Prasad MNV (1999) Metallothioneins, metal binding complexes and metal sequestration in plants. In: Prasad MNV (ed) Heavy metal stress in plants. Springer-Verlag, Berlin Heidelberg

    Chapter  Google Scholar 

  • Prasad MNV, Freitas HMO (2003) Metal hyperaccumulation in plants—biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6:285–321

    Article  Google Scholar 

  • Pytlakowska K, Kita A, Janoska P, Połowniak M, Kozik V (2012) Multi-element analysis of mineral and trace elements in medicinal herbs and their infusions. Food Chem 135:494–501

    Article  CAS  Google Scholar 

  • Queralt I, Ovejero M, Carvalho ML, Marques AF, Liabres JM (2005) Quantitative determination of essential and trace element content of medicinal plants and their infusions by XRF and ICP techniques. X-Ray Spectrom 34:213–217

    Article  CAS  Google Scholar 

  • Rai S, Dinesh KS, Arora SS, Sharma M, Chopra AK (2011) Concentration of the heavy metals in Aloe vera L. (Aloe barbadensis Miller) leaves collected from different geographical locations of India. Annals Biol Res 2:575–579

    CAS  Google Scholar 

  • Raju D, Hazra S, Mehta UJ (2013) Natural accumulation of copper and distribution of metals in plants growing in copper mining area, Rajasthan, India. Biorem Biodiv Bioavail 7:54–60

    Google Scholar 

  • Rao KS, Dominic TR, Singh K, Kaluwin C, Rivett DE, Gwyn P, Jones GP (1990) Lipid, fatty acid, amino acid and mineral compositions of five edible plant leaves. J Agri Food Chem 38:2137–2139

    Article  CAS  Google Scholar 

  • Rashed MN (2010) Monitoring of contaminated toxic and heavy metals, from mine tailings through age accumulation, in soil and some wild plants at Southeast Egypt. J Hazard Mater 178:739–746

    Article  CAS  Google Scholar 

  • Rauser WE (1995) Phytochelatins and related peptides structure, biosynthesis and function. Plant Physiol 109:1141–1149

    Article  CAS  Google Scholar 

  • Ray DK, Nayak PK, Rautray TR, Vijayan V, Jena S (2004) Elemental analysis of anti-diabetic medicinal plants using energy dispersive X-ray fluorescence technique. Indian J Phy 78B:103–105

    CAS  Google Scholar 

  • Reimann C, Koller F, Frengstad B, Kashulina G, Niskavaara H, Englmaier P (2001) Comparison of the element composition in several plant species and their substrate from a 1500 000-km2 area in northern Europe. Sci Total Environ 278:87–112

    Article  CAS  Google Scholar 

  • Rihawy MS, Bakraji EH, Aref S, Shaban R (2010) Elemental investigation of Syrian medicinal plants using PIXE analysis. Nucl Instrum Meth B 268:2790–2793

    Article  CAS  Google Scholar 

  • Saha S, Hazra GC, Saha B, Mandal B (2015) Assessment of heavy metals contamination in different crops grown in long-term sewage-irrigated areas of Kolkata, West Bengal. India Environ Monit Asses. doi:10.1007/s10661-014-4087-9

    Google Scholar 

  • Sandhyasree M, Kruthika DL, Priyanka B, Vijayalakshmi S, Ranjitha J (2015) Microwave-assisted digestion for determination of Pb, Mg, Mn, Cd and Zn in Salvinia molesta by flame atomic absorption spectrometry. Int J Pharm Sci Rev Res 32:95–97

    CAS  Google Scholar 

  • Saraf A, Samant A (2013) Evaluation of some minerals and trace elements in Achyranthes aspera Linn. Int J Pharma Sci 3:229–233

    Google Scholar 

  • Sardans J, Penuelas J (2007) Drought changes the dynamics of trace element accumulation in a Mediterranean Quercus ilex forest. Envir Poll 147:567–583

    Article  CAS  Google Scholar 

  • Sekabira K, Origa HO, Mutumba G, Kakudidi E, Basamba TA (2011) Heavy metal phytoremediation by Commelina benghalensis (L) and Cynodon dactylon (L) growing in urban stream sediments. Int J Plant Phys Biochem 3:133–142

    CAS  Google Scholar 

  • Senila M, Drolc A, Pintar A, Senila L, Levei E (2014) Validation and measurement uncertainty evaluation of the ICP-OES method for the multi-elemental determination of essential and nonessential elements from medicinal plants and their aqueous extracts. J Anal Sci Technol 5:1–9

    Article  Google Scholar 

  • Shallari S, Schwartz C, Hasko A, Morel JL (1998) Heavy metals in soils and plants of serpentine and industrial sites of Albania. Sci Total Environ 209:133–142

    Article  CAS  Google Scholar 

  • Sharanabasappa GK, Santosh MK, Shaila D, Seetharam YN, Rao S (2007) Phytochemical studies on Bauhinia racemosa Lam. Bauhinia purpurea Linn. and Hardwickia binata Roxb. J Chem 4:21–31

    CAS  Google Scholar 

  • Sharma R, Bhardwaj R, Handa N, Gautam V, Kohli SK, Bali S, Kaur P, Thukral AK, Arora S, Ohri P, Vig AP (2016) Response of phytochelatins and metallothionins in alleviation of heavy metal stress in plants: an overview. Plant metal interaction. Elsevier , pp. 263–277pp

  • Shehata HFS (2014) Ecology and nutritive status of Sisymbrium irio L in the Nile delta, Egypt. J Exp Biol 10:127–142

    Google Scholar 

  • Shukla D, Trivedi PK, Nath P, Tuteja N (2016) Metallothioneins and phytochelatins: role and perspectives in heavy metal(loid)s stress tolerance in crop plants. In: Tuteja N, Gill SS (eds) Abiotic stress response in plants. Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim, Germany. doi:10.1002/9783527694570.ch12

    Google Scholar 

  • Sinclair SA, Kramer U (2012) The zinc homeostasis network of land plants. Biochim Biophys Acta 1823:1553–1567

    Article  CAS  Google Scholar 

  • Singh KP, Bhattacharya S, Sharma P (2014) Assessment of heavy metal contents of some Indian medicinal plants. J Agric Environ Sci 14:1125–1129

    Google Scholar 

  • Soares DCF, Oliveira EF, Silva GDF, Duarte LP, Pott VJ, Filho SAV (2008) Salvinia auriculata: aquatic bioindicator studied by instrumental neutron activation analysis (INAA). Appl Radiat Isot 66:561–564

    Article  CAS  Google Scholar 

  • Soetan KO, Olaiya CO, Oyewole OE (2010) The importance of mineral elements for humans, domestic animals and plants: a review. Afr J Food Sci 4:200–222

    CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1995) Biometry. W.H. Freeman, New York

    Google Scholar 

  • Souza LA, Piotto FA, Nogueiro RC, Azevedo RA (2013) Use of non-hyperaccumulator plant species for the phytoextraction of heavy metals using chelating agents. Sci agric (Piracicaba, Braz) 70:290–295

    Article  CAS  Google Scholar 

  • Srivastava SK, Rai V, Srivastava M, Rawat AKS, Mehrotra S (2006) Estimation of heavy metals in different Berberis species and its market samples. Environ Monit Assess 116:315–320

    Article  CAS  Google Scholar 

  • Stanojkovic-sebica A, Pivica R, Josica D, Dinica Z, Stanojkovic A (2015) Heavy metals content in selected medicinal plants commonly used as components for herbal formulations. J Agric Sci 21:317–325

    Google Scholar 

  • Steffens JC (1990) The heavy metal-binding peptides of plants. Annu Rev Plant Physiol Plant Mol Biol 41:553–575

    Article  CAS  Google Scholar 

  • Subhashini V, Swamy AVVS (2014) Phytoremediation of metal (Pb, Ni, Zn, Cd and Cr) contaminated soils using Canna indica. Curr World Environ 9:780–784

    Article  Google Scholar 

  • Subramanian R, Gayathri S, Rathnavel C, Raj V (2012) Analysis of mineral and heavy metals in some medicinal plants collected from local market. Asian Pac J Trop Biomed:S74–S78

  • Sukender K, Jaspreet S, Sneha D, Munish G (2012) AAS estimation of heavy metals and trace elements in Indian herbal cosmetic preparations. Res J Chem Sci 2:46–51

    Google Scholar 

  • Szczygłowska M, Piekarska A, Konieczka P, Nameisnik J (2011) Use of Brassica plants in the phytoremediation and biofumigation processes. Int J Mol Sci 12:7760–7771

    Article  CAS  Google Scholar 

  • Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng 2011:1–31

    Article  Google Scholar 

  • Tanwar S, Jain J, Verma S, Solanki D (2012) Standardization and phytochemical evaluation of Tinospora cordifolia (Willd) Miers. (Menispermaceae). Int J Pharm Pharm Sci 4:219–223

    Google Scholar 

  • Teuchies J, Jacobs S, Oosterlee L, Bervoets L, Meire P (2013) Role of plants in metal cycling in a tidal wetland: implications for phytoremidiation. Sci Total Environ 445–446:146–154

    Article  CAS  Google Scholar 

  • Thukral AK, Chand R, Sharma VN, Joshi MC (1982a) Copper, zinc and manganese concentration in some desert plants from Ajitsagar. Geobios 9:173–174

    Google Scholar 

  • Thukral AK, Joshi MC, Chand R (1982b) Copper concentration in some grasses from Khetrinagar and Ajitsagar. Curr Sci 51:752–753

    CAS  Google Scholar 

  • Tigist M, Rao VM, Faye G (2014) Determination of essential and non-essential metals concentration in papaya (Carica papaya) seeds, leaves and supporting soil of Odo-Shakiso district in South East Oromia region, Ethiopia. Int J Res Pharm Chem 4:202–216

    Google Scholar 

  • Tlustos P, Szakova J, Vyslouzilova M, Pavlıkova D, Weger J, Javorska H (2007) Variation in the uptake of arsenic, cadmium, lead, and zinc by different species of willows Salix spp. grown in contaminated soils. Cent Eur J Biol 2:254–275

    CAS  Google Scholar 

  • Tokalıoglu S (2012) Determination of trace elements in commonly consumed medicinal herbs by ICP-MS and multivariate analysis. Food Chem 134:2504–2508

    Article  CAS  Google Scholar 

  • Udoka OC, Ekanem EO, Harami MD (2014) Phytoaccumulation potentials of Tamarindus indica. Int J Innov Sci Res 11:72–78

    Google Scholar 

  • Ugolini F, Tognetti R, Raschi A, Bacci L (2013) Quercus ilex L. as bioaccumulator for heavy metals in urban areas: effectiveness of leaf washing with distilled water and considerations on the trees distance from traffic. Urban For Urban Gree 12:576–584

    Article  Google Scholar 

  • Vermani A, Navneet P, Chauhan A (2010) Physico-chemical analysis of ash of some medicinal plants growing in Uttarakhand, India. Nat Sci 8:88–91

    Google Scholar 

  • Vymazal Z, Brezinova T (2015) Heavy metals in plants in constructed and natural wetlands: concentration, accumulation and seasonality. Wat Sci Tech 71:268–276

    Article  CAS  Google Scholar 

  • Wang G, Su MY, Chen YH, Luo D, Gao SF (2006) Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China. Environ Poll 144:127–135

    Article  CAS  Google Scholar 

  • Wang J, Li X, Yang J (2015) Heavy metal enrichment characteristics of poplar. International Conference on Logistics Engineering, Management and Computer Science (LEMCS 2015) 1687–1689

  • Waters BM, Sankaran RP (2011) Moving micronutrients from the soil to the seeds: genes and physiological processes from biofortication perspective. Plant Sci 180:562–574

    Article  CAS  Google Scholar 

  • Williams LE, Pittman JK, Hall JL (2000) Emerging mechanisms for heavy metal transport in plants. Biochim Biophys Acta 1465:104–126

    Article  CAS  Google Scholar 

  • Wisłocka M, Krawczyk J, Klink A, Morrison L (2006) Bioaccumulation of heavy metals by selected plant species from uranium mining dumps in the Sudety Mts., Poland. Polish J of Environ Stud 15:811–818

    Google Scholar 

  • Xie JH, Shena MY, Niea SP, Liua X, Yina JY, Huanga DF, Zhanga H, Xie MY (2013) Simultaneous analysis of 18 mineral elements in Cyclocarya paliurus polysaccharide by ICP-AES. Carbohydr Polym 94:216–220

    Article  CAS  Google Scholar 

  • Yagi S, Alia E, Rahman A, Gihan MO, Hassan EL, Hafeez A, Mohammed MA (2013) Elemental analysis of ten Sudanese medicinal plants using X-ray fluorescence. J Appl Ind Sci 1:49–53

    CAS  Google Scholar 

  • Yamashita CI, Saiki M, Sertié AA (2006) Elemental analysis of leaves and extracts of Casearia medicinal plants by instrumental neutron activation analysis. J Radioanal Nucl Ch 270:181–186

    Article  CAS  Google Scholar 

  • Yasar U, Ozyigit II, Yalcin IE, Dogan I, Demir G (2012) Determination of some heavy metals and mineral nutrients of bay tree Laurus nobilis L. in Bartin city, Turkey. Pak J Bot 44:81–89

    CAS  Google Scholar 

  • Yildiz D, Kula I, Ay G, Baslar S, Dogan Y (2010) Determination of trace elements in the plants of Mt. Bozdag, Izmir, Turkey. Arch Biol Sci Belgrade 62:731–738

    Article  Google Scholar 

  • Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36:409–430

    Article  CAS  Google Scholar 

  • Zafar M, Khan MA, Ahmad M, Jan G, Sultana S, Ullah K, Marwat SK, Ahmad F, Jabeen A, Nazir A, Abbasi AM, Rehman Z, Ullah Z (2010) Elemental analysis of some medicinal plants used in traditional medicine by atomic absorption spectrophotometer (AAS). J Med Plants Res 4:1987–1990

    Article  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Guo K, Mehta SK, Zhang PC, Yang ZM (2007) Metabolic adaptations to mercury-induced oxidative stress in roots of Medicago sativa L. J Inorg Biochem 101:1–9

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Vinod Kumar is thankful to the University with Grants Commission, New Delhi for providing research fellowship for this work. Department of Science and Technology, Government of India is duly acknowledged for providing INSPIRE fellowship to Anket Sharma.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vinod Kumar or Renu Bhardwaj.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Sharma, A., Dhunna, G. et al. A tabulated review on distribution of heavy metals in various plants. Environ Sci Pollut Res 24, 2210–2260 (2017). https://doi.org/10.1007/s11356-016-7747-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7747-1

Keywords

Navigation