Skip to main content

Advertisement

Log in

Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

A Correction to this article was published on 29 August 2020

This article has been updated

Abstract

Fine aerosol fraction (particulate matter with aerodynamic diameter <= 1.0 μm (PM)1.0) over the Indian Institute of Technology Delhi campus was monitored day and night (10 h each) at 30 m height from November 2009 to March 2010. The samples were analyzed for 5 ions (NH4 +, NO3 , SO4 2−, F, and Cl) and 12 trace elements (Na, K, Mg, Ca, Pb, Zn, Fe, Mn, Cu, Cd, Cr, and Ni). Importantly, secondary aerosol (sulfate and nitrate) formation was observed during dense foggy events, supporting the fog-smog-fog cycle. A total of 76 samples were used for source apportionment of PM mass. Six factors were resolved by PMF analyses and were identified as secondary aerosol, secondary chloride, biomass burning, soil dust, iron-rich source, and vehicular emission. The geographical location of the sources and/or preferred transport pathways was identified by conditional probability function (for local sources) and potential source contribution function (for regional sources) analyses. Medium- and small-scale metal processing (e.g. steel sheet rolling) industries in Haryana and National Capital Region (NCR) Delhi, coke and petroleum refining in Punjab, and thermal power plants in Pakistan, Punjab, and NCR Delhi were likely contributors to secondary sulfate, nitrate, and secondary chloride at the receptor site. The agricultural residue burning after harvesting season (Sept–Dec and Feb–Apr) in Punjab, and Haryana contributed to potassium at receptor site during November–December and March 2010. The soil dust from North and East Pakistan, and Rajasthan, North-East Punjab, and Haryana along with the local dust contributed to soil dust at the receptor site, during February and March 2010. A combination of temporal behavior and air parcel trajectory ensemble analyses indicated that the iron-rich source was most likely a local source attributed to emissions from metal processing facilities. Further, as expected, the vehicular emissions source did not show any seasonality and was local in origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Change history

  • 29 August 2020

    The correct 1st Author name is Jai Prakash.

References

  • Aatmeeyata, Kaul DS, Sharma M (2009) Traffic generated non-exhaust particulate emissions from concrete pavement: a mass and particle size study for two-wheelers and small cars. Atmos Environ 43:5691–5697. doi:10.1016/j.atmosenv.2009.07.032

    Article  CAS  Google Scholar 

  • Andreae MO, Andreae TW, Annegarn H, Beer F, Cachier H, Elbert W, Harris GW, Maenhaut W, Salma I, Swap R, Wienhold FG, Zenker T (1998) Airborne studies of emissions from savanna fires in southern Africa. 2. Aerosol chemical composition. J Geophys Res 103:32,119–32,132

    Article  CAS  Google Scholar 

  • Appel BR, Tokiwa Y (1981) Atmospheric particulate nitrate sampling errors due to reactions with particulate and gaseous strong acids. Atmos Environ 15:1087–1089

    Article  CAS  Google Scholar 

  • Artaxo P, Oyola P, Martinez R (1999) Aerosol composition and source apportionment in Santiago de Chile. Nucl Instruments Methods Phys Res Sect B Beam Interact Mater Atoms 150:409–416. doi:10.1016/S0168-583X(98)01078-7

    Article  CAS  Google Scholar 

  • Ashbaugh L, Malm W, Sadeh W (1985) Residence time probability analysis of sulfur at Grand Canyon National Park. Atmos Environ 19:1263–1270. doi:10.1016/0004-6981(85)90256-2

    Article  CAS  Google Scholar 

  • Bapna M, Sunder Raman R, Ramachandran S, Rajesh TA (2013) Airborne black carbon concentrations over an urban region in western India—temporal variability, effects of meteorology, and source regions. Environ Sci Pollut Res 20:1617–1631. doi:10.1007/s11356-012-1053-3

  • Begum BA, Kim E, Biswas SK, Hopke PK (2004) Investigation of sources of atmospheric aerosol at urban and semi-urban areas in Bangladesh. Atmos Environ 38:3025–3038

    Article  CAS  Google Scholar 

  • Begum BA, Swapan KB, Markwitz A, Hopke PK (2010) Identification of sources of fine and coarse particulate matter in Dhaka, Bangladesh. Aerosol Air Qual Res :1–9. doi: 10.4209/aaqr.2009.12.0082

  • Benner WH, Brodzinsky R, Novakov T (1982) Oxidation of SO2 in droplets which contain soot particles. Atmos Environ 16:1333–1339. doi:10.1016/0004-6981(82)90054-3

    Article  CAS  Google Scholar 

  • Bhanuprasad S, Venkataraman C, Bhushan M (2008) Positive matrix factorization and trajectory modelling for source identification: a new look at Indian Ocean experiment ship observations. Atmos Environ 42:4836–4852

    Article  CAS  Google Scholar 

  • Chakraborty A, Gupta T (2010) Chemical characterization and source apportionment of submicron (PM1) aerosol in Kanpur Region, India. Aerosol Air Qual Res :433–445

  • Cherian R, Venkataraman C, Ramachandran S, Quaas J, Kedia S (2012) Examination of aerosol distributions and radiative effects over the bay of Bengal and the Arabian Sea region during ICARB using satellite data and a general circulation model. Atmos Chem Phys Discuss 11:13911–13946

    Article  Google Scholar 

  • Chinnam N, Dey S, Tripathi SN, Sharma M (2006) Dust events in Kanpur, northern India: chemical evidence for source and implications to radiative forcing. Geophys Res Lett 33:1–4. doi:10.1029/2005GL025278

    Article  Google Scholar 

  • Chung CE, Ramanathan V, Carmichael G, Kulkarni S, Tang Y, Adhikary B, Leung LR, Qian Y (2010) Anthropogenic aerosol radiative forcing in Asia derived from regional models with atmospheric and aerosol data assimilation. Atmos Chem Phys 10:6007–6024

    Article  CAS  Google Scholar 

  • Collett J, Daube B, Gunz D, Hoffmann M (1990) Intensive studies of Sierra Nevada cloud water chemistry and its relationship to precursor aerosol and gas concentrations. Atmos Environ 24:1741–1757

  • Delfino RJ, Brummel S, Wu J, Stern H, Ostro B, Lipsett M, Winer A, Street DH, Zhang L, Tjoa T, Gillen DL (2009) The relationship of respiratory and cardiovascular hospital admissions to the southern California wildfires of 2003. Occup and Environ Medic 66:189–197

    Article  CAS  Google Scholar 

  • Delfino RJ, Staimer N, Tjoa T, Gillen D, Kleinman MT, Sioutas C, Cooper D (2008) Personal and ambient air pollution exposures and lung function decrements in children with asthma. Environ Health Perspect 116:550–558

    Article  Google Scholar 

  • Delfino RJ, Staimer N, Vaziri ND (2011) Air pollution and circulating biomarkers of oxidative stress. Air Qual, Atmos and Health 4:37–52

    Article  CAS  Google Scholar 

  • Dey S, Tripathi SN (2008) Aerosol direct radiative effects over Kanpur in the Indo-Gangetic basin, northern India: long-term (2001–2005) observations and implications to regional climate. J Geophys Res 113:D04212

    Google Scholar 

  • Ghose MK, Paul R, Banerjee SK (2004) Assessment of the impacts of vehicular emissions on urban air quality and its management in Indian context: the case of Kolkata (Calcutta). Environ Sci & Polic 7:345–351

    Article  CAS  Google Scholar 

  • Gupta T, Mandariya A (2013) Sources of submicron aerosol during fog-dominated wintertime at Kanpur. Environ Sci Pollut Res 20:5615–5629. doi:10.1007/s11356-013-1580-6

    Article  CAS  Google Scholar 

  • Gupta T, Chakraborty A, Ujinwal K (2010) Development and performance evaluation of an indigenously developed air sampler designed to collect submicron aerosol. Annals of the Indian National Acad of Engg (INAE) 7:189–193

    Google Scholar 

  • Gupta T, Jaiprakash, Dubey S (2011) Field performance evaluation of a newly developed PM2.5 sampler at IIT Kanpur. Sci Total Environ 409:3500–3507

    Article  CAS  Google Scholar 

  • Gupta A, Kumar R, Kumari KM, Srivastava S (2003) Measurement of NO2, HNO3, NH3 and SO2 and related particulate matter at a rural site in Rampur, India. Atmos Environ 37:4837–4846

    Article  CAS  Google Scholar 

  • Han Y-J, Holsen TM, Hopke PK, Yi S-M (2005) Comparison between back trajectory based modeling and Lagrangian backward dispersion modeling for locating sources of reactive gaseous mercury. Environ Sci Technol 39:715–1723

    Google Scholar 

  • Harrison RM, Pio CA (1983) Size-differentiated composition of inorganic atmospheric aerosols of both marine and polluted continental origin. Atmos Environ 17:1733–1738. doi:10.1016/0004-6981(83)90180-4

    Article  CAS  Google Scholar 

  • Hoag K, Jr JC, Pandis S, Collett J (1999) The influence of drop size-dependent fog chemistry on aerosol processing by San Joaquin Valley fogs. Atmos Environ 33:4817–4832

    Article  CAS  Google Scholar 

  • Huang J, Choi H (2010) Ambient mercury sources in Rochester NY results from principle components analysis (PCA) of mercury monitoring network data. Environ Sci Technol 44:8441–8445

    Article  CAS  Google Scholar 

  • ICAR (2013) Indian council of agricultural research, annual report 2013–14. Government of India, New Delhi

    Google Scholar 

  • IPCC (2013) Intergovernmental panel on climate change; technical summary. Climate chang 2013, the physical science basis. Contribution of working group I to the fifth assessment report, pp 33–115. doi:10.1017/CBO9781107415324.005

  • Jacob D, Waldman J (1986) The H2SO4-HNO3-NH3 system at high humidities and in fogs: 2. Comparison of field data with thermodynamic calculations. J Geophys Res 91:1089–1096

    Article  CAS  Google Scholar 

  • Kadowaki S (1977) Size distribution and chemical composition of atmospheric particulate nitrate in the Nagoya area. Atmos Environ 11:671–675

    Article  CAS  Google Scholar 

  • Khare P, Kumar N, Satsangi G (1998) Formate and acetate in particulate matter and dust fall at Dayalbagh, Agra (India). Chemos 36:2993–3002

    Article  CAS  Google Scholar 

  • Khillare P, Rafiqul R, Shridhar V, Agarwal T, Balachandran S (2008) Temporal variability of benzene concentration in the ambient air of Delhi: a comparative assessment of pre- and post-CNG periods. J Hazard Mater 154:1013–1018

    Article  CAS  Google Scholar 

  • Kim E, Hopke (2004a) Improving source identification of fine particles in a rural northeastern U.S. area utilizing temperature-resolved carbon fractions. J Geophys Res 109:D09204

    Google Scholar 

  • Kim E, Hopke PK (2004b) Comparison between conditional probability function and nonparametric regression for fine particle source directions. Atmos Environ 38:4667–4673

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2003) Source identification of Atlanta aerosol by positive matrix factorization. J Air Waste Manage Asso 53:731–739

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Edgerton ES (2004) Improving source identification of Atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmos Environ 38:3349–3362

    Article  CAS  Google Scholar 

  • Kim E, Hopke PK, Youjun Q (2005) Estimation of organic carbon blank values and error structures of the speciation trends network data for source apportionment estimation of organic carbon blank values and error structures of the speciation trends net. J Air Waste Manage Asso 55:1190–1199

    Article  CAS  Google Scholar 

  • Kumar R, Kumari KM, Srivastava SS (2006) Field measurements of aerosol particle dry deposition on tropical foliage at an urban site. Environ Sci Technol 40:135–141

    Article  CAS  Google Scholar 

  • Kumar R, Srivastava SS, Kumari KM (2007) Characteristics of aerosols over suburban and urban site of semiarid region in India : seasonal and spatial variations. Aerosol Air Qual Res 7:531–549

    CAS  Google Scholar 

  • Kurian AJ (2011) Chemical characterization of aerosol in Delhi: identification and quantification of sources sing positive matrix factorization. M. Tech. Thesis, IIT Delhi

  • Landis MS, Norris GA, Williams RW, Weinstein JP (2001) Personal exposures to PM2.5 mass and trace elements in Baltimore, MD, USA. Atmos Environ 35:6511–6524

  • Malm WC, Sisler JF, Eldred RA, Cahill TA (1994) Spatial and seasonal trends in particle concentration and optical extinction in the United States. J Geophys Res 99:1347–1370

    Article  CAS  Google Scholar 

  • Mehta B, Venkataraman C, Bhushan M, Tripathi SN (2009) Identification of sources affecting fog formation using receptor modeling approaches and inventory estimates of sectoral emissions. Atmos Environ 43:1288–1295

    Article  CAS  Google Scholar 

  • Menon S, Hansen J, Nazarenko L, Luo Y (2002) Climate effects of black carbon aerosols in China and India. Science 297:2250–2253. doi:10.1126/science.1075159

    Article  CAS  Google Scholar 

  • Middleton NJ (1986) A geography of dust storms in southwest Asia. J Clim :6183–196

  • Ministry of Environment and Forests (2004), GHG inventory information, in India’s Initial National Communication to the United Nations Framework Convention on Climate Change, Government of India, New Delhi, pp 31–56. http://www.natcomindia.org/pdfs/chapter2.pdf

  • Moorthy KK, Babu SS (2005) Aerosol characteristics and radiative impacts over the Arabian Sea during the intermonsoon season: results from ARMEX field campaign. J Atmos Sci 62:92–206

    Article  Google Scholar 

  • MSME (2013) Ministry of micro small and medium enterprises, annual report 2013–14. http://msme.gov.in/WriteReadData/DocumentFile/ANNUALREPORT-MSME-2013-14P.pdf

  • Nair PVN, Joshi PV, Mishra UC, Vohra KG (1983) Growth of aqueous solution droplets of HNO3 and HCL in the atmosphere. American Meteo Soci 40:107–115

    CAS  Google Scholar 

  • Olson DA, Norris GA, Landis MS, Vette AF (2004) Chemical characterization of ambient particulate matter near the world trade Center : elemental carbon, organic carbon, and mass reconstruction. Environ Sci Technol 38:4465–4473

    Article  CAS  Google Scholar 

  • Paatero P (1997) Least squares formulation of robust non-negative factor analysis. Chemom Intell Lab Syst 37:23–35

    Article  CAS  Google Scholar 

  • Paatero P, Hopke PK (2003) Discarding or down weighting high-noise variables in factor analytic models. Anal Chim Acta 490:277–289. doi:10.1016/S0003-2670(02)01643-4

    Article  CAS  Google Scholar 

  • Paatero P, Tapper U (1994) Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5:111–126

    Article  Google Scholar 

  • Paatero P, Hopke PK, Begum BA, Biswas SK (2005) A graphical diagnostic method for assessing the rotation in factor analytical models of atmospheric pollution. Atmos Environ 39:193–201. doi:10.1016/j.atmosenv.2004.08.018

    Article  CAS  Google Scholar 

  • Panda J, Sharan M, Gopalakrishnan SG (2009) Study of regional-scale boundary layer characteristics over northern India with a special reference to the role of the Thar desert in regional-scale transport. J Appl Meteorol Clim 48:2377–2402. doi:10.1175/2009JAMC1926.1

  • Pandithurai G, Dipu S, Dani KK, Tiwari S, Bisht DS, Devara PCS, Pinker RT (2008) Aerosol radiative forcing during dust events over New Delhi, India. J Geophys Res 113:D13209. doi:10.1029/2008JD009804

    Article  Google Scholar 

  • Pekney NJ, Davidson CI, Robinson A, Zhou L, Hopke PK, Eatough D, Rogge WF (2006) Major source categories for PM 2.5 in Pittsburgh using PMF and UNMIX. Aerosol Sci Technol 40:910–924

    Article  CAS  Google Scholar 

  • Polissar A, Hopke PK, Paatero P, Malm WC, Sisler JF (1998) Atmospheric aerosol over Alaska: 2. Elemental composition and sources. J Geophys Res 103:19045–19057

    Article  CAS  Google Scholar 

  • Polissar AV, Hopke PK, Poirot RL (2001) Atmospheric aerosol over Ver- mont: chemical composition and sources. Environ Sci Technol 35:4604–4621

    Article  CAS  Google Scholar 

  • Pope C (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who’s at risk? Environ Health Perspecs 108:713–723

    Article  CAS  Google Scholar 

  • Prasad AK, Singh RP (2007) Changes in aerosol parameters during major dust storm events (2001-2005) over the indo-Gangetic Plains using AERONET and MODIS data. J Geophys Res 112:D09208. doi:10.1029/2006JD007778

    Google Scholar 

  • Ramachandran S, Kedia S (2010) Black carbon aerosols over an urban region: radiative forcing and climate impact. J Geophys Res 115:D10202

    Article  Google Scholar 

  • Ramanathan V, Li F, Ramana MV, Praveen PS, Kim D, Corrigan CE, Nguyen H, Stone EA, Schauer JJ, Carmichael GR, Adhikary B, Yoon SC (2007) Atmospheric brown clouds: hemispherical and regional variations in long-range transport, absorption, and radiative forcing. J Geophys Res 112:D22S21

    Article  Google Scholar 

  • Rana S, Kant Y, Dadhwal V (2009) Diurnal and seasonal variation of spectral properties of aerosols over Dehradun, India. Aerosol Air Qual Res 9:32–49

    CAS  Google Scholar 

  • Rao X, Collett J (1998) The drop size-dependence of iron and manganese concentrations in clouds and fogs: implications for sulfate production. J Atmos Chem 30:273–289

    Article  CAS  Google Scholar 

  • Rastogi N, Sarin MM (2005) Long-term characterization of ionic species in aerosols from urban and high altitude sites in western India: role of mineral dust and anthropogenic sources. Atmos Environ 39:5541–5554

    Article  CAS  Google Scholar 

  • Reddy MS, Boucher O, Venkataraman C, Verma S, Le’on J-F, Bellouin N, Pham M (2004) General circulation model estimates of aerosol transport and radiative forcing during the Indian Ocean experiment. J Geophys Res 109:D16205

    Article  Google Scholar 

  • Rolph GD (2016) Real-time Environmental Applications and Display System (READY) Website (http://www.ready.noaa.gov). NOAA Air Resources Laboratory, College Park

  • RTI (2008) Research Triangle Institute (RTI), Standard Operating Procedure for Particulate Matter Gravimetric Analysis

  • Sabapathy A (2008) Air quality outcomes of fuel quality and vehicular technology improvements in Bangalore city, India. Transport Res Part D: Transport and Environ 13:449–454

    Article  Google Scholar 

  • Satheesh SK, Krishna Moorthy K, Kaufman YJ, Takemura T (2006) Aerosol optical depth, physical properties and radiative forcing over the Arabian Sea. Meteorology and Atmos Phys 91:45–62

    Article  Google Scholar 

  • Sharma M, Maloo S (2005) Assessment of ambient air PM10 and PM2.5 and characterization of PM10 in the city of Kanpur, India. Atmos Environ 39:6015–6026. doi:10.1016/j.atmosenv.2005.04.041

    Article  CAS  Google Scholar 

  • Shridhar V, Khillare P, Agarwal T, Ray S (2010) Metallic species in ambient particulate matter at rural and urban location of Delhi. J Hazard Mater 175:600–607

    Article  CAS  Google Scholar 

  • Shrivastava MK, Lane TE, Donahue NM, Pandis SN, Robinson AL (2008) Effects of gas particle partitioning and aging of primary emissions on urban and regional organic aerosol concentrations. J Geophys Res 113:D18301

    Article  Google Scholar 

  • Singh S, Soni K, Bano T, Tanwar RS, Nath S, Arya BC (2010) Clear-sky direct aerosol radiative forcing variations over mega-city Delhi. Annal Geophys 28:1157–1166

    Article  Google Scholar 

  • Singhai A (2010) Measurement and chemical characterization of aerosol in sensitive region of Delhi City (M. Tech. Thesis, IIT Delhi)

  • Srivastava A, Jain V (2007) Size distribution and source identification of total suspended particulate matter and associated heavy metals in the urban atmosphere of Delhi. Chemos 68:579–589

    Article  CAS  Google Scholar 

  • Srivastava AK, Dey S, Tripathi, SN (2012) Aerosol characteristics over the Indo-Gangetic basin: implication to regional climate. Book chapter: Atmospheric Aerosol-Regional Characteristics-Chemistry and Physics. INTECH Publisher.

  • Sunder Raman R, Ramachandran S (2011) Source apportionment of the ionic components in precipitation over an urban region in western India. Environ Sci Pollut Res 18:212–225. doi:10.1007/s11356-010-0365-4

    Article  Google Scholar 

  • Sunder Raman R, Ramachandran S, Rastogi N (2010) Source identification of ambient aerosols over an urban region in western. J Environ Monit 12:1330–1340. doi:10.1039/b925511g

    Article  CAS  Google Scholar 

  • Tiwari S, Chate DM, Srivastava AK, Bisht DS, Padmanabhamurty B (2012) Assessment of PM1, PM2.5 and PM10 concentrations in Delhi at different mean cycles. Geofizika 29:125–141

    Google Scholar 

  • Tripathi SN, Dey S, Tare V (2005) Enhanced layer of black carbon in a north Indian industrial city. Geophys Res Lett 32:L12802. doi:10.1029/2005GL022564

    Google Scholar 

  • U.S.E.P.A (1998) Quality Assurance Guidance Document 2.12: Monitoring PM2.5 in ambient air using designated reference or class I equivalent methods. U.S. Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC

  • Venkataraman C, Habib G, Kadamba D et al (2006) Emissions from open biomass burning in India: integrating the inventory approach with high-resolution moderate resolution imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob Biogeochem Cycles 20:1–12. doi:10.1029/2005GB002547

    Article  Google Scholar 

  • Verma S, Boucher O, Reddy MS, Upadhyaya HC, Van P L, Binkowski FS, Sharma OP (2007a) Modeling and analysis of aerosol processes in an interactive chemistry general circulation model. J Geophys Res 112:D03207

    Google Scholar 

  • Verma S, Boucher O, Venkataraman C, Reddy MS, Müller D, Chazette P, Crouzille B (2006) Aerosol lofting from sea breeze during the Indian Ocean experiment. J Geophys Res 111:D07208

    Article  Google Scholar 

  • Verma S, Venkataraman C, Boucher O (2008) Origin of surface and columnar Indian Ocean experiment (INDOEX) aerosols using source- and region-tagged emissions transport in a general circulation model. J Geophys Res 113:D24211

    Article  Google Scholar 

  • Verma S, Venkataraman C, Boucher O (2011) Attribution of aerosol radiative forcing over India during the winter monsoon to emissions from source categories and geographical regions. Atmos Environ 45:4398–4407

    Article  CAS  Google Scholar 

  • Verma S, Venkataraman C, Boucher O, Ramachandran S (2007b) Source evaluation of aerosols measured during the Indian Ocean experiment using combined chemical transport and back trajectory modeling. J Geophys Res 112:D11210

    Article  Google Scholar 

  • Vinoj V, Suresh Babu S, Satheesh SK, Moorthy KK, Kaufman YJ (2004) Radiative forcing by aerosols over the bay of Bengal region derived from shipborne, island-based, and satellite (moderate-resolution imaging Spectroradiometer) observations. J Geophys Res 109:D05203

    Article  Google Scholar 

  • Wang Y, Zhuanga G, Zhanga X, Huanga K, Xua C, Tanga A, Chena J, Ana Z (2006) The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in shanghai. Atmos Environ 40:2935–2952

    Article  CAS  Google Scholar 

  • Weschler CJ, Mandich ML, Graedel TE (1986) Speciation, photosensitivity, and reactions of transition metal ions in atmospheric droplets. J Geophys Res 95:D710045. doi:10.1029/JD091iD04p05189

    Google Scholar 

  • WHO, Watts N, Adger WN et al (2015) Reducing Global Health risks through mitigation of short-lived climate pollutants. Scoping Report for Policy-makers Lancet 6736:53. doi:10.1016/S0140-6736(15)60901-1

    Google Scholar 

  • Yoshizumi K, Hoshi (1985) Size distributions of ammonium nitrate and sodium nitrate in atmospheric aerosols. Environ Sci Technol 19:258–261. doi:10.1021/es00133a007

    Article  CAS  Google Scholar 

  • Zhang XQ, McMurry PH (1987) Theoretical analysis of evaporative losses from impactor and filter deposits. Atmos Environ 21:1779–1789. doi:10.1016/0004-6981(87)90118-1

    Article  CAS  Google Scholar 

  • Zhang X, McMurry PH (1992) Evaporative losses of fine particulate nitrates during sampling. Atmos Environ Part A, Gen Top 26:3305–3312. doi:10.1016/0960-1686(92)90347-N

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gazala Habib.

Additional information

Resposible Editor: Gerhard Lammel

Electronic supplementary material

ESM 1

(DOCX 1452 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiprakash, Singhai, A., Habib, G. et al. Chemical characterization of PM1.0 aerosol in Delhi and source apportionment using positive matrix factorization. Environ Sci Pollut Res 24, 445–462 (2017). https://doi.org/10.1007/s11356-016-7708-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7708-8

Keywords

Navigation