Environmental Science and Pollution Research

, Volume 23, Issue 23, pp 24081–24091 | Cite as

Transgenic glyphosate-resistant oilseed rape (Brassica napus) as an invasive weed in Argentina: detection, characterization, and control alternatives

  • Claudio E Pandolfo
  • Alejandro Presotto
  • Francisco Torres Carbonell
  • Soledad Ureta
  • Mónica Poverene
  • Miguel Cantamutto
Research Article


The presence of glyphosate-resistant oilseed rape populations in Argentina was detected and characterized. The resistant plants were found as weeds in RR soybeans and other fields. The immunological and molecular analysis showed that the accessions presented the GT73 transgenic event. The origin of this event was uncertain, as the cultivation of transgenic oilseed rape cultivars is prohibited in Argentina. This finding might suggest that glyphosate resistance could come from unauthorized transgenic oilseed rape crops cultivated in the country or as seed contaminants in imported oilseed rape cultivars or other seed imports. Experimentation showed that there are alternative herbicides for controlling resistant Brassica napus populations in various situations and crops. AHAS-inhibiting herbicides (imazethapyr, chlorimuron and diclosulam), glufosinate, 2,4-D, fluroxypyr and saflufenacil proved to be very effective in controlling these plants. Herbicides evaluated in this research were employed by farmers in one of the fields invaded with this biotype and monitoring of this field showed no evidence of its presence in the following years.


Brassica napus Transgene escape Glyphosate GMO Seed contaminants GT73 Invasiveness 



We thank BASF Argentina Co., in particular the assistance of Juan Pablo Migasso and Fabricio Mock. To Germana Bonavetti, Ignacio Vazquez and Verónica Pugliese; for letting us conduct our research in their fields and for providing historical records of crop rotations and herbicide applications. We also thank Noemí Fritz and the Cámara Arbitral de Cereales Bahía Blanca for the analysis of grain oil content and fatty acid composition. We gratefully acknowledge the National Research Council of Argentina (CONICET) for a fellowship to CEP. This research was supported by grant ANPCYT-PICT 2854.

Supplementary material

11356_2016_7670_MOESM1_ESM.pdf (1.9 mb)
ESM 1 (PDF 1900 kb)


  1. Allender CJ, King GJ (2010) Origins of the amphiploid species Brassica napus L. investigated by chloroplast and nuclear molecular markers. BMC Plant Biol 10:54. doi: 10.1186/1471-2229-10-54 CrossRefGoogle Scholar
  2. Allnutt T, Blackburn J, Copeland J, Dennis C, Dixon J, Laybourn R, Wontner-Smith T, Chisholm J, Hugo S, Henry C (2013) Estimates of genetically modified oilseed in shared farming machinery. Ann Appl Biol 162:119–130. doi: 10.1111/aab.12007 CrossRefGoogle Scholar
  3. Andersen NS, Rasmussen J, Jørgensen RB (2010) You reap what you sow—or do you?—volunteers in organic row-sown and broadcast-sown oilseed rape fields. Eur J Agron 32:121–126. doi: 10.1016/j.eja.2009.09.001 CrossRefGoogle Scholar
  4. Bailleul D, Ollier S, Huet S, Gardarin A, Lecomte J (2012) Seed spillage from grain trailers on road verges during oilseed rape harvest: an experimental survey. PLoS One 7:e32752. doi: 10.1371/journal.pone.0032752 CrossRefGoogle Scholar
  5. Beckie HJ, Harker KN, Hall LM, Warwick SI, Légère A, Sikkema PH, Clayton GW, Thomas AG, Leeson JY, Séguin-Swartz G, Simard M-J (2006) A decade of herbicide-resistant crops in Canada. Can J Plant Sci 86:1243–1264CrossRefGoogle Scholar
  6. Benvenuti S (2007) Weed seed movement and dispersal strategies in the agricultural environment. Weed Biol Manag 7:141–157. doi: 10.1111/j.1445-6664.2007.00249.x CrossRefGoogle Scholar
  7. Busi R, Powles SB (2016) Transgenic glyphosate-resistant canola (Brassica napus) can persist outside agricultural fields in Australia. Agric Ecosyst Environ 220:28–34. doi: 10.1016/j.agee.2015.12.028 CrossRefGoogle Scholar
  8. Comisión Nacional Asesora de Biotecnología Agropecuaria (CONABIA) (2016) Evaluaciones de OVGM en Argentina.
  9. Crawley MJ, Brown SL (2004) Spatially structured population dynamics in feral oilseed rape. Proc R Soc B Biol Sci 271:1909–1916. doi: 10.1098/rspb.2004.2814 CrossRefGoogle Scholar
  10. D’Hertefeldt T, Jørgensen RB, Pettersson LB (2008) Long-term persistence of GM oilseed rape in the seedbank. Biol Lett 4:314–317. doi: 10.1098/rsbl.2008.0123 CrossRefGoogle Scholar
  11. Devos Y, Hails RS, Messéan A, Perry JN, Squire GR (2012) Feral genetically modified herbicide tolerant oilseed rape from seed import spills: are concerns scientifically justified? Transgenic Res 21:1–21. doi: 10.1007/s11248-011-9515-9 CrossRefGoogle Scholar
  12. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2015) Infostat versión 2015. Grupo InfoStat, FCA-Universidad Nacional de Córdoba, ArgentinaGoogle Scholar
  13. Doyle J, Doyle J (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15Google Scholar
  14. Elling B, Neuffer B, Bleeker W (2009) Sources of genetic diversity in feral oilseed rape (Brassica napus) populations. Basic Appl Ecol 10:544–553. doi: 10.1016/j.baae.2009.01.005 CrossRefGoogle Scholar
  15. FAOSTAT (2016) Food and Agriculture Organization of the United Nations. Accessed 15 March 2016
  16. Friesen L, Nelson A, Van Acker R (2003) Evidence of contamination of pedigree canola (Brassica napus) seedlots in western Canada from genetically engineered herbicide resistance traits. Agron J 95:1342–1347CrossRefGoogle Scholar
  17. Green JM (2009) Evolution of glyphosate-resistant crop technology. Weed Sci 57:108–117. doi: 10.1614/WS-08-030.1 CrossRefGoogle Scholar
  18. Gressel J (2005) The challenges of ferality. In: Gressel J (ed) Crop ferality and volunteerism. Taylor & Francis Group, USA, pp. 1–7CrossRefGoogle Scholar
  19. Gulden RH, Shirtliffe SJ, Thomas AG (2003) Harvest losses of canola (Brassica napus) cause large seedbank inputs. Weed Sci 51:83–86. doi: 10.1614/0043-1745(2003)051[0083:HLOCBN]2.0.CO;2 CrossRefGoogle Scholar
  20. Gulden RH, Thomas AG, Shirtliffe SJ (2004) Relative contribution of genotype, seed size and environment to secondary seed dormancy potential in Canadian spring oilseed rape (Brassica napus. Weed Res 44:97–106. doi: 10.1111/j.1365-3180.2003.00377.x CrossRefGoogle Scholar
  21. Gulden RH, Warwick SI, Thomas AG (2008) The biology of Canadian weeds. 137. Brassica napus L. and B. rapa L. Can J Plant Sci 88:951–996. doi: 10.4141/CJPS07203 CrossRefGoogle Scholar
  22. Hall L, Rahman H, Gulden RH, Thomas AG (2005) Volunteer oilseed rape—will herbicide-resistance traits assist ferality? In: Gressel J (ed) Crop ferality and volunteerism. Taylor & Francis Group, USA, pp. 59–79Google Scholar
  23. Hecht M, Oehen B, Schulze J, Brodmann P, Bagutti C (2014) Detection of feral GT73 transgenic oilseed rape (Brassica napus) along railway lines on entry routes to oilseed factories in Switzerland. Environ Sci Pollut Res Int 21:1455–1465. doi: 10.1007/s11356-013-1881-9 CrossRefGoogle Scholar
  24. International Board for Plant Genetic Resources (IBPGR) (1990) Descriptors for Brassica and Raphanus, RomeGoogle Scholar
  25. Instituto Nacional de Semillas (INASE) (2016) Catálogo Nacional de Cultivares Accessed 20 July 2016
  26. Iriarte L (2015) Cultivo de colza: comportamiento varietal y manejo, XXIII Congreso AAPRESID Accessed 25 July 2016
  27. International Service for the Acquisition of Agri-Biotech Applications (ISAAA) (2016) GM Approval Database Accessed 20 March 2016
  28. Katsuta K, Matsuo K, Yoshimura Y, Ohsawa R (2015) Long-term monitoring of feral genetically modified herbicide-tolerant Brassica napus populations around unloading Japanese ports. Breed Sci 275:265–275. doi: 10.1270/jsbbs.65.265 CrossRefGoogle Scholar
  29. Knispel AL, McLachlan SM, Van Acker RC, Friesen LF (2008) Gene flow and multiple herbicide resistance in escaped canola populations. Weed Sci 56:72–80. doi: 10.1614/WS-07-097.1 CrossRefGoogle Scholar
  30. Kolářová M, Tyšer L, Soukup J (2013) Survey about the weed occurrence on arable land in the Czech Republic. Sci Agric Bohem 44:63–69. doi: 10.7160/sab.2013.440210 Google Scholar
  31. Krato C, Petersen J (2012) Competitiveness and yield impact of volunteer oilseed rape (Brassica napus) in winter and spring wheat (Triticum aestivum. J Plant Dis Prot 119:74–82. doi: 10.1007/BF03356423 CrossRefGoogle Scholar
  32. Lutman PJW, Freeman SE, Pekrun C (2003) The long-term persistence of seeds of oilseed rape (Brassica napus) in arable fields. J Agric Sci 141:231–240. doi: 10.1017/S0021859603003575 CrossRefGoogle Scholar
  33. Mazzara M, Grazioli E, Savini C, Van den Eede G (2007) Event specific method for the quantification of oilseed rape line RT73 using real-time PCR, ItalyGoogle Scholar
  34. McVetty P, Zelmer C (2007) Breeding herbicide-tolerant oilseed rape cultivars. In: Gupta S (ed) Advances in botanical research, incorporating advances in plant pathology Vol. 45 rapeseed breeding. Academic Press - Elsevier Ltd., USA, pp. 233–270Google Scholar
  35. Michael PJ, Owen MJ, Powles SB (2010) Herbicide-resistant weed seeds contaminate grain sown in the western Australian Grainbelt. Weed Sci 58:466–472. doi: 10.1614/WS-D-09-00082.1 CrossRefGoogle Scholar
  36. Ministerio de Agroindustria (MinAgro). 2016. Sistema Integrado de Información Agropecuaria Accessed 22 July 2016
  37. Monsanto Biotechnology Regulatory Sciences (2004) A Recommended Procedure for Real-Time Quantitative TaqMan PCR for Roundup Ready® Canola RT73Google Scholar
  38. Mulligan G (1995) Key to the Brassicaceae (Cruciferae) of Canada and Alaska. Agriculture and Agri-Food Canada, Ottawa, CanadaGoogle Scholar
  39. Nandula VK, Reddy KN, Rimando AM, Duke SO, Poston DH (2007) Glyphosate-resistant and -susceptible soybean (Glycine max) and canola (Brassica napus) dose response and metabolism relationships with glyphosate. J Agric Food Chem 55:3540–3545. doi: 10.1021/jf063568l CrossRefGoogle Scholar
  40. Nishizawa T, Nakajima N, Tamaoki M, Aono M, Kubo A, Saji H (2016) Fixed-route monitoring and a comparative study of the occurrence of herbicide-resistant oilseed rape (Brassica napus L.) along a Japanese roadside. GM Crops Food 7:20–37. doi: 10.1080/21645698.2016.1138196 CrossRefGoogle Scholar
  41. Organisation for Economic Co-operation and Development (OECD) (2007) Agricultural policies in OECD countries: monitoring and evaluation. ISBN 978–92–64-02746-6Google Scholar
  42. Pascher K, Macalka S, Rau D, Gollmann G, Reiner H, Glössl J, Grabherr G (2010) Molecular differentiation of commercial varieties and feral populations of oilseed rape (Brassica napus L. BMC Evol Biol 10:63. doi: 10.1186/1471-2148-10-63 CrossRefGoogle Scholar
  43. Pekrun C, Lutman PJW, Baeumer K (1997) Induction of secondary dormancy in rape seeds (Brassica napus L.) by prolonged imbibition under conditions of water stress or oxygen deficiency in darkness. Eur J Agron 6:245–255. doi: 10.1016/S1161-0301(96)02051-5 CrossRefGoogle Scholar
  44. Pessel D, Lecomte J, Emeriau V, Krouti M, Messean A, Gouyon PH (2001) Persistence of oilseed rape (Brassica napus L.) outside of cultivated fields. Theor Appl Genet 102:841–846. doi: 10.1007/s001220100583 CrossRefGoogle Scholar
  45. Piñeiro M, Villarreal F (2005) Modernización agrícola y nuevos actores sociales. Ciencia Hoy 15:32–36Google Scholar
  46. Pivard S, Adamczyk K, Lecomte J, Lavigne C, Bouvier A, Deville A, Gouyon PH, Huet S (2008a) Where do the feral oilseed rape populations come from? A large-scale study of their possible origin in a farmland area. J Appl Ecol 45:476–485. doi: 10.1111/j.1365-2664.2007.01358.x CrossRefGoogle Scholar
  47. Pivard S, Demšar D, Lecomte J, Debeljak M, Džeroski S (2008b) Characterizing the presence of oilseed rape feral populations on field margins using machine learning. Ecol Model 212:147–154. doi: 10.1016/j.ecolmodel.2007.10.012 CrossRefGoogle Scholar
  48. Prakash S, Wu X, Bhat SR (2012) History, evolution, and domestication of brassica crops. Plant Breed Rev 35:19–82. doi: 10.1002/9781118100509.ch2 Google Scholar
  49. R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Google Scholar
  50. Ritz C (2010) Toward a unified approach to dose-response modeling in ecotoxicology. Environ Toxicol Chem 29:220–229. doi: 10.1002/etc.7 CrossRefGoogle Scholar
  51. Secretaría de Agricultura, Ganadería, Pesca y Alimentación (SAGPyA) (1997) Solicitud de ensayo a campo de canola tolerante al herbicida glifosato. Resolución N° 228Google Scholar
  52. Saji H, Nakajima N, Aono M, Tamaoki M, Kubo A, Wakiyama S, Hatase Y, Nagatsu M (2005) Monitoring the escape of transgenic oilseed rape around Japanese ports and roadsides. Environ Biosaf Res 4:217–222. doi: 10.1051/ebr:2006003 CrossRefGoogle Scholar
  53. Schafer MG, Ross A, Londo JP, Burdick C, Lee EH, Travers SE, Van de Water PK, Sagers CL (2011) The establishment of genetically engineered canola populations in the U.S. PLoS One 6:e25736. doi: 10.1371/journal.pone.0025736 CrossRefGoogle Scholar
  54. Schoenenberger N, D’Andrea L (2012) Surveying the occurrence of subspontaneous glyphosate-tolerant genetically engineered Brassica napus L. (Brassicaceae) along Swiss railways. Environ Sci Eur 24:23. doi: 10.1186/2190-4715-24-23 CrossRefGoogle Scholar
  55. Schulze J, Brodmann P, Oehen B, Bagutti C (2015) Low level impurities in imported wheat are a likely source of feral transgenic oilseed rape (Brassica napus L.) in Switzerland. Environ Sci Pollut Res 22:16936–16942. doi: 10.1007/s11356-015-4903-y CrossRefGoogle Scholar
  56. Schulze J, Frauenknecht T, Brodmann P, Bagutti C (2014) Unexpected diversity of feral genetically modified oilseed rape (Brassica napus L.) despite a cultivation and import ban in Switzerland. PLoS One 9:e114477. doi: 10.1371/journal.pone.0114477 CrossRefGoogle Scholar
  57. Secretaría Nacional de Sanidad Ambiental (SENASA) (2007) Resolución 305/2007: Prohibe la importación de colza portadora de eventos transgénicos no autorizados para su producción y comercialización en la República Argentina. Accesed 20 July 2016
  58. Simard M, Légère A, Pageau D, Lajeunesse J, Warwick SI (2002) The frequency and persistence of volunteer canola (Brassica napus) in Québec cropping systems. Weed Technol 16:433–439. doi: 10.1614/0890-037X(2002)016%255B0433%253ATFAPOV%255D2.0.CO%253B2 CrossRefGoogle Scholar
  59. Squire GR, Breckling B, Dietz Pfeilstetter A, Jorgensen RB, Lecomte J, Pivard S, Reuter H, Young MW (2011) Status of feral oilseed rape in Europe: its minor role as a GM impurity and its potential as a reservoir of transgene persistence. Environ Sci Pollut Res Int 18:111–115. doi: 10.1007/s11356-010-0376-1 CrossRefGoogle Scholar
  60. von der Lippe M, Kowarik I (2007) Crop seed spillage along roads: a factor of uncertainty in the containment of GMO. Ecography (Cop) 30:483–490. doi: 10.1111/j.2007.0906-7590.05072.x CrossRefGoogle Scholar
  61. Weber EA, Gruber S, Claupein W (2014) Emergence and performance of volunteer oilseed rape (Brassica napus) in different crops. Eur J Agron 60:33–40. doi: 10.1016/j.eja.2014.07.004 CrossRefGoogle Scholar
  62. Yoshimura Y, Beckie HJ, Matsuo K (2006) Transgenic oilseed rape along transportation routes and port of Vancouver in western Canada. Environ Biosaf Res 5:67–75. doi: 10.1051/ebr:2006019 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Claudio E Pandolfo
    • 1
    • 2
  • Alejandro Presotto
    • 1
    • 2
  • Francisco Torres Carbonell
    • 1
  • Soledad Ureta
    • 1
    • 2
  • Mónica Poverene
    • 1
    • 2
  • Miguel Cantamutto
    • 1
    • 3
  1. 1.Departamento de AgronomíaUniversidad Nacional del SurBahía BlancaArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Bahía BlancaArgentina
  3. 3.Estación Experimental Agropecuaria Hilario AscasubiInstituto Nacional de Tecnología Agropecuaria (INTA)Hilario AscasubiArgentina

Personalised recommendations