Skip to main content
Log in

Assessment of elemental composition and properties of copper smelter-affected dust and its nano- and micron size fractions

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

A comprehensive approach has been developed to the assessment of composition and properties of atmospherically deposited dust in the area affected by a copper smelter. The approach is based on the analysis of initial dust samples, dynamic leaching of water soluble fractions in a rotating coiled column (RCC) followed by the determination of recovered elements and characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of dust separated using field-flow fractionation in a RCC. Three separated size fractions of dust (<0.2, 0.2–2, and >2 μm) were characterized by static light scattering and scanning electron microscopy, whereupon the fractions were analyzed by ICP-AES and ICP-MS (after digestion). It has been evaluated that toxic elements, which are characteristics for copper smelter emissions (As, Cu, Zn), are accumulated in fraction >2 μm. At the same time, up to 2.4, 3.1, 8.2, 6.7 g/kg of As, Cu, Zn, Pb, correspondently, were found in nanoparticles (<0.2 μm). It has been also shown that some trace elements (Sn, Sb, Ag, Bi, and Tl) are accumulated in fraction <0.2, and their content in this fraction may be one order of magnitude higher than that in the fraction >2 μm, or the bulk sample. It may be assumed that Sn, Sb, Ag, Bi, Tl compounds are adsorbed onto the finest dust particles as compared to As, Cu, Zn compounds, which are directly emitted from the copper smelter as microparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Acosta JA, Faz A, Kalbitz K, Jansen B, Martínez-Martínez S (2011) Heavy metal concentrations in particle size fractions from street dust of Murcia (Spain) as the basis for risk assessment. J Environ Monit 13:3087–3096. doi:10.1039/c1em10364d

    Article  CAS  Google Scholar 

  • Bolea E, Laborda F, Castillo JR (2010) Metal associations to microparticles, nanocolloids and macromolecules in compost leachates: size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS. Anal Chim Acta 661:206–214. doi:10.1016/j.aca.2009.12.021

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco Blandino I, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR172. doi:10.1116/1.2815690

    Article  Google Scholar 

  • Celine CL, Lespes G, Dubascoux S, Aupiais J, Pointurier F, Potin-Gautier M (2009) Colloidal transport of uranium in soil: size fractionation and characterization by field-flow fractionation-multi-detection. J Chromatogr A 1216:9113–9119. doi:10.1016/j.chroma.2009.08.025

    Article  Google Scholar 

  • Christoforidis A, Stamatis N (2009) Heavy metal contamination in street dust and roadside soil along the major national road in Kavala's region, Greece. Geoderma 151:257–263. doi:10.1016/j.geoderma.2009.04.016

    Article  CAS  Google Scholar 

  • Eum CH, Kim BK, Kang DY, Lee S (2012) Characterization of Asian dust using steric mode of sedimentation field-flow fractionation (Sd/StFFF). Anal. Sci Technol 25:476–482. doi:10.5806/AST.2012.25.6.476

    Google Scholar 

  • Fedotov PS, Vanifatova NG, Shkinev VM, Spivakov BY (2011) Fractionation and characterization of nano- and microparticles in liquid media. Anal Bioanal Chem 400:1787–1804. doi:10.1007/s00216-011-4704-1

    Article  CAS  Google Scholar 

  • Fedotov PS, Kördel W, Miró M, Peijnenburg WJGM, Wennrich R, Huang PM (2012) Extraction and fractionation methods for exposure assessment of trace metals, metalloids and hazardous organic compounds in terrestrial environments. Crit rev. Environ Sci Technol 42:1117–1171. doi:10.1080/10643389.2011.556544

    Article  CAS  Google Scholar 

  • Fedotov PS, Ermolin MS, Karandashev VK, Ladonin DV (2014) Characterization of size, morphology and elemental composition of nano-, submicron, and micron particles of street dust separated using field-flow fractionation in a rotating coiled column. Talanta 130:1–7. doi:10.1016/j.talanta.2014.06.040

    Article  CAS  Google Scholar 

  • Fedotov PS, Ermolin MS, Katasonova ON (2015) Field-flow fractionation of nano- and microparticles in rotating coiled columns. J Chromatogr A 1381:202–209. doi:10.1016/j.chroma.2014.12.079

    Article  CAS  Google Scholar 

  • Fedotov PS, Ermolin MS, Ivaneev AI, Fedyunina NN, Karandashev VK, Tatsy YG (2016) Continuous-flow leaching in a rotating coiled column for studies on the mobility of toxic elements in dust samples collected near a metallurgic plant. Chemosphere 146:371–378. doi:10.1016/j.chemosphere.2015.11.124

    Article  CAS  Google Scholar 

  • Gashkina NA, Tatsii YG, Udachin VN, Aminov PG (2015) Biogeochemical indication of environmental contamination: a case study of a large copper smelter. Geochem Internat 53:253–264. doi:10.1134/S0016702915030076

    Article  CAS  Google Scholar 

  • Geng H, Hwang H, Liu X, Dong S, Ro CU (2014) Investigation of aged aerosols in size-resolved Asian dust storm particles transported from Beijing, China, to Incheon, Korea, using low-Z particle EPMA. Atmos Сhem Phys 3307–3323. doi: 10.5194/acp-14-3307-2014

  • Giddings JC (1966) A new separation concept based on a coupling of concentration and flow non-uniformities. Sep Sci Technol 1:123–125. doi:10.1080/01496396608049439

    CAS  Google Scholar 

  • Giddings JC (1985) A system based on split-flow lateral-transport thin (SPLITT) separation cells for rapid and continuous particle fractionation. Sep Sci Technol 20:749–768. doi:10.1080/01496398508060702

    Article  CAS  Google Scholar 

  • Halatek T, Lutz P, Stetkiewicz J, Krajnow A, Wieczorek E, Swiercz R, Szymczak M, Wasowicz W (2013) Comparison of neurobehavioral and biochemical effects in rats exposed to dusts from copper smelter plant at different locations. J Environ Sci Health A Tox Hazard Subst Environ Eng 48:1000–1011. doi:10.1080/10934529.2013.773198

    Article  CAS  Google Scholar 

  • Han Q, Zender CS (2010) Desert dust aerosol age characterized by mass-age tracking of tracers. J Geophys Res 115:D22201. doi:10.1029/2010JD014155

    Article  Google Scholar 

  • Kim JS, Park K (2012) Atmospheric aging of Asian dust particles during long range transport. Aerosol Sci Technol:913–924. doi:10.1080/02786826.2012.680984

  • Lee S, Park HY, Lee SK, Yang SG, Eum CH (2001) Separation and characterization of dust and ground water particulates using gravitational SPLITT fractionation. Bull Kor Chem Soc 22:616–622

    CAS  Google Scholar 

  • Ljung K, Selinus O, Otabbong E, Berglund M (2006) Metal and arsenic distribution in soil particle sizes relevant to soil ingestion by children. Appl Geochem 21:1613–1624. doi:10.1016/j.apgeochem.2006.05.005

    Article  CAS  Google Scholar 

  • Lu X, Wang L, Lei K, Huang J, Zhai Y (2009) Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China. J Hazard Mater 161:1058–1062. doi:10.1016/j.jhazmat.2008.04.052

    Article  CAS  Google Scholar 

  • Lubin JH, Pottern LM, Stone BJ, Fraumeni JF Jr (2000) Respiratory cancer on a cohort of copper smelter workers: results from more than 50 years of follow up. Am J Epidemiol 151:554–565

    Article  CAS  Google Scholar 

  • Lubin JH, Moore LE, Fraumeni JF Jr, Cantor KP (2008) Respiratory cancer and inhaled inorganic arsenic in copper smelters workers: a linear relationship with cumulative exposure that increases with concentration. Environ Health Perspect 116:1661–1665. doi:10.1289/ehp.11515

    Article  CAS  Google Scholar 

  • Magnuson ML, Kelty CA, Kelty KC (2001) Trace metal loading on water-borne soil and dust particles characterized through the use of split-flow thin-cell fractionation. Anal Chem 73:3492–3496. doi:10.1021/ac0015321

    Article  CAS  Google Scholar 

  • Martley E, Gulson BL, Pfeifer HR (2004) Metal concentrations in soils around the copper smelter and surrounding industrial complex of port Kembla, NSW, Australia. Sci Total Environ 325:113–127. doi:10.1016/j.scitotenv.2003.11.012

    Article  CAS  Google Scholar 

  • Medyńska-Juraszek A, Kabała C (2012) Heavy metal pollution of forest soils affected by the copper industry. J Elem 17:441–451. doi:10.5601/jelem.2012.17.3.07

    Google Scholar 

  • Oberdorster G (2001) Pulmonary effects of inhaled ultrafine particles. Int Arch Occup Environ Health 74:1–8. doi:10.1007/s004200000185

    Article  CAS  Google Scholar 

  • Pope JM, Farago ME, Thornton I, Cordos E (2005) Metal enrichment in Zlatna, a Romanian copper smelting town. Water Air Soil Pollut 162:1–18. doi:10.1007/s11270-005-5989-5

    Article  CAS  Google Scholar 

  • Tokalıoglu S, Kartal S (2006) Multivariate analysis of the data and speciation of heavy metals in street dust samples from the organized Industrial District in Kayseri (Turkey. Atmos Environ 40:2797–2805. doi:10.1016/j.atmosenv.2006.01.019

    Article  Google Scholar 

  • Viren J, Silvers A (1999) Nonlinearity in the lung cancer dose-response for airborne arsenic: apparent confounding by year of hire in evaluating lung cancer risks from arsenic exposure in Tacoma smelter workers. Regul Toxicol Pharmacol 30:117–129. doi:10.1006/rtph.1999.1341

    Article  CAS  Google Scholar 

  • Wei H, Turyk M, Cali S, Dorevitch S, Erdal S, Li A (2009) Particle size fractionation and human exposure of polybrominated diphenyl ethers in indoor dust from Chicago. J Environ Sci Health A Tox Hazard Subst Environ Eng 44:1353–1361. doi:10.1080/10934520903213251

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the financial support from the Ministry of Education and Science of the Russian Federation (Program of Increasing Competitiveness of NUST «MISiS», project No К2-2015-072) and the Russian Foundation of Basic Research (project No 14-03-00128). The authors are also indebted to Dr. Peter Hewitson (Brunel Institute for Bioengineering, London, UK) for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail S. Ermolin.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

ESM 1

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ermolin, M.S., Fedotov, P.S., Ivaneev, A.I. et al. Assessment of elemental composition and properties of copper smelter-affected dust and its nano- and micron size fractions. Environ Sci Pollut Res 23, 23781–23790 (2016). https://doi.org/10.1007/s11356-016-7637-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7637-6

Keywords

Navigation