Skip to main content
Log in

Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes

Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Imazalil (IMZ) is a widely used fungicide for the post-harvest treatment of citrus, classified as “likely to be carcinogenic in humans” for EPA, that can be only partially removed by conventional biological treatment. Consequently, specific or combined processes should be applied to prevent its release to the environment. Biological treatment with adapted microorganism consortium, photo-Fenton, and coupled biological photo-Fenton processes were tested as alternatives for the purification of water containing high concentration of the fungicide and the coadjutants present in the commercial formulation. IMZ-resistant consortium with the capacity to degrade IMZ in the presence of a C-rich co-substrate was isolated from sludge coming from a fruit packaging company wastewater treatment plant. This consortium was adapted to resist and degrade the organics present in photo-Fenton-oxidized IMZ water solution. Bacteria colonies from the consortia were isolated and identified. The effect of H2O2 initial concentration and dosage on IMZ degradation rate, average oxidation state (AOS), organic acid concentration, oxidation, and mineralization percentage after photo-Fenton process was determined. The application of biological treatment to the oxidized solutions notably decreased the total organic carbon (TOC) in solution. The effect of the oxidation degree, limited by H2O2 concentration and dosage, on the percentage of mineralization obtained after the biological treatment was determined and explained in terms of changes in AOS. The concentration of H2O2 necessary to eliminate IMZ by photo-Fenton and to reduce TOC and chemical oxygen demand (COD) by biological treatment, in order to allow the release of the effluents to rivers with different flows, was estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Ausec L, Zakrzewski M, Goesmann A, Schlüter A, Mandic-Mulec I (2011) Bioinformatic analysis reveals high diversity of bacterial genes for laccase-like enzymes. PLoS One 6(10):e25724

    Article  CAS  Google Scholar 

  • Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. Journal of Environmental Chemical Engineering 2(1):557–572

    Article  CAS  Google Scholar 

  • Ballesteros Martín M, Pérez JS, López JC, Oller I, Rodríguez SM (2009) Degradation of a four-pesticide mixture by combined photo-Fenton and biological oxidation. Water Res 43(3):653–660

    Article  Google Scholar 

  • Bugg TD, Ahmad M, Hardiman EM, Singh R (2011) The emerging role for bacteria in lignin degradation and bio-product formation. Curr Opin Biotechnol 22(3):394–400

    Article  CAS  Google Scholar 

  • Campo J, Masiá A, Blasco C, Picó Y (2013) Occurrence and removal efficiency of pesticides in sewage treatment plants of four Mediterranean river basins. J Hazard Mater 263:146–157

    Article  CAS  Google Scholar 

  • EPA (1999). Draft guidelines for carcinogenic assessment. Environmental Protection Agency, United States.

  • Faust BC, Zepp RG (1993) Photochemistry of aqueous iron (III)-polycarboxylate complexes: roles in the chemistry of atmospheric and surface waters. Environmental Science & Technology 27(12):2517–2522

    Article  CAS  Google Scholar 

  • Hazime R, Ferronato C, Fine L, Salvador A, Jaber F, Chovelon JM (2012) Photocatalytic degradation of imazalil in an aqueous suspension of TiO2 and influence of alcohols on the degradation. Appl Catal B Environ 126:90–99

    Article  CAS  Google Scholar 

  • Hazime R, Nguyen QH, Ferronato C, Huynh TKX, Jaber F, Chovelon JM (2013) Optimization of imazalil removal in the system UV/TiO2/K2S2O8 using a response surface methodology (RSM). Appl Catal B Environ 132:519–526

    Article  Google Scholar 

  • Hazime R, Nguyen QH, Ferronato C, Salvador A, Jaber F, Chovelon JM (2014) Comparative study of imazalil degradation in three systems: UV/TiO2, UV/K2S2O8 and UV/TiO2/K2S2O8. Appl Catal B Environ 144:286–291

    Article  CAS  Google Scholar 

  • Hincapié Pérez M, Peñuela G, Maldonado MI, Malato O, Fernández-Ibáñez P, Oller I, Malato S (2006) Degradation of pesticides in water using solar advanced oxidation processes. Appl Catal B Environ 64(3):272–281

    Article  Google Scholar 

  • Jiménez M, Ignacio Maldonado M, Rodríguez EM, Hernández-Ramírez A, Saggioro E, Carra I, Sánchez Pérez JA (2015) Supported TiO2 solar photocatalysis at semi-pilot scale: degradation of pesticides found in citrus processing industry wastewater, reactivity and influence of photogenerated species. J Chem Technol Biotechnol 90(1):149–157

    Article  Google Scholar 

  • Jiménez-Tototzintle M, Oller I, Hernández-Ramírez A, Malato S, Maldonado MI (2015) Remediation of agro-food industry effluents by biotreatment combined with supported TiO2/H2O2 solar photocatalysis. Chem Eng J 273:205–213

    Article  Google Scholar 

  • Karas PA, Perruchon C, Exarhou K, Ehaliotis C, Karpouzas DG (2011) Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. Biodegradation 22(1):215–228

    Article  CAS  Google Scholar 

  • Kellner H, Luis P, Zimdars B, Kiesel B, Buscot F (2008) Diversity of bacterial laccase-like multicopper oxidase genes in forest and grassland Cambisol soil samples. Soil Biol Biochem 40(3):638–648

    Article  CAS  Google Scholar 

  • Lapertot M, Ebrahimi S, Dazio S, Rubinelli A, Pulgarin C (2007) Photo-Fenton and biological integrated process for degradation of a mixture of pesticides. J Photochem Photobiol A Chem 186(1):34–40

    Article  CAS  Google Scholar 

  • Ley Provincial 6260 Anexo I “De prevención y control de la contaminación por parte de las industrias y Decreto Reglamentario N° 5837”

  • Malato S, Fernández-Ibáñez P, Maldonado MI, Blanco J, Gernjak W (2009) Decontamination and disinfection of water by solar photocatalysis: recent overview and trends. Catal Today 147(1):1–59

    Article  CAS  Google Scholar 

  • Mantzavinos D, Psillakis E (2004) Enhancement of biodegradability of industrial wastewaters by chemical oxidation pre-treatment. J Chem Technol Biotechnol 79(5):431–454

    Article  CAS  Google Scholar 

  • Maruyama T, Komatsu C, Michizoe J, Sakai S, Goto M (2007) Laccase-mediated degradation and reduction of toxicity of the postharvest fungicide imazalil. Process Biochem 42(3):459–461

    Article  CAS  Google Scholar 

  • Oller I, Malato S, Sánchez-Pérez JA, Maldonado MI, Gassó R (2007) Detoxification of wastewater containing five common pesticides by solar AOPs–biological coupled system. Catal Today 129(1):69–78

    Article  CAS  Google Scholar 

  • Owsianiak M, Chrzanowski Ł, Szulc A, Staniewski J, Olszanowski A, Olejnik-Schmidt AK, Heipieper HJ (2009) Biodegradation of diesel/biodiesel blends by a consortium of hydrocarbon degraders: effect of the type of blend and the addition of biosurfactants. Bioresour Technol 100(3):1497–1500

    Article  CAS  Google Scholar 

  • Parra S, Sarria V, Malato S, Péringer P, Pulgarin C (2000) Photochemical versus coupled photochemical–biological flow system for the treatment of two biorecalcitrant herbicides: metobromuron and isoproturon. Appl Catal B 27(3):153–168

    Article  CAS  Google Scholar 

  • Perez M, Torrades F, Domenech X, Peral J (2002) Fenton and photo-Fenton oxidation of textile effluents. Water Res 36(11):2703–2710

    Article  CAS  Google Scholar 

  • Perruchon C, Patsioura V, Vasileiadis S, Karpouzas DG (2016) Isolation and characterisation of a Sphingomonas strain able to degrade the fungicide ortho-phenylphenol. Pest Manag Sci 72(1):113–124

    Article  CAS  Google Scholar 

  • Pignatello JJ, Liu D, Huston P (1999) Evidence for an additional oxidant in the photoassisted Fenton reaction. Environmental Science & Technology 33(11):1832–1839

    Article  CAS  Google Scholar 

  • Pivinski JT (1999) Chemical oxygen demand. In: Clesceri LS, Greenberg AE, Eatona AD (eds) Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, American Water Works Association, Water Environment Association, Washington DC, Section 5220

  • Pouran SR, Aziz AA, Daud WMAW (2015) Review on the main advances in photo-Fenton oxidation system for recalcitrant wastewaters. J Ind Eng Chem 21:53–69

    Article  Google Scholar 

  • Primo O, Rivero MJ, Ortiz I (2008) Photo-Fenton process as an efficient alternative to the treatment of landfill leachates. J Hazard Mater 153(1):834–842

    Article  CAS  Google Scholar 

  • Pupo Nogueira RF, Oliveira MC, Paterlini WC (2005) Simple and fast spectrophotometric determination of H2O2 in photo-Fenton reactions using metavanadate. Talanta 66(1):86–91

    Article  Google Scholar 

  • Rathore HS, Nollet LML (eds) (2012). Pesticides: evaluation of environmental pollution. CRC Press

  • Santa Cruz Biotechnology, Inc. (2010). MSDS Imazalil, USA.

  • Santiago DE, Araña J, González-Díaz O, Alemán-Dominguez ME, Acosta-Dacal AC, Fernandez-Rodríguez C, Doña-Rodríguez JM (2014) Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil. Appl Catal B Environ 156:284–292

    Article  Google Scholar 

  • Santiago DE, Araña J, González-Díaz O, Henríquez-Cárdenes E, Ortega-Méndez JA, Pulido-Melián E, Pérez-Peña J (2015). Treatment of wastewater containing imazalil by means of Fenton-based processes. Desalin Water Treat: 1–13.

  • Santiago DE, Doña-Rodríguez JM, Araña J, Fernández-Rodríguez C, González-Díaz O, Pérez-Peña J, Silva AM (2013) Optimization of the degradation of imazalil by photocatalysis: comparison between commercial and lab-made photocatalysts. Appl Catal B Environ 138:391–400

    Article  Google Scholar 

  • Soon AN, Hameed BH (2011) Heterogeneous catalytic treatment of synthetic dyes in aqueous media using Fenton and photo-assisted Fenton process. Desalination 269(1):1–16

    Article  CAS  Google Scholar 

  • Vandamme P, Bernardet JF, Segers P, Kersters K, Holmes B (1994) NOTES: new perspectives in the classification of the Flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. Int J Syst Evol Microbiol 44(4):827–831

    Google Scholar 

  • Zapata A, Malato S, Sánchez-Pérez JA, Oller I, Maldonado MI (2010a) Scale-up strategy for a combined solar photo-Fenton/biological system for remediation of pesticide-contaminated water. Catal Today 151(1):100–106

    Article  CAS  Google Scholar 

  • Zapata A, Oller I, Rizzo L, Hilgert S, Maldonado MI, Sánchez-Pérez JA, Malato S (2010b) Evaluation of operating parameters involved in solar photo-Fenton treatment of wastewater: interdependence of initial pollutant concentration, temperature and iron concentration. Appl Catal B Environ 97(1):292–298

    Article  CAS  Google Scholar 

  • Zhang RL, Huang GQ, Lian JY, Li XG (2007) Degradation of MTBE and TEA by a new isolate from MTBE-contaminated soil. J Environ Sci 19(9):1120–1124

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by project FSNano-08 (ANPCyT, Argentina) and PICT 2014-2386. GC, DC, and RC are members of CONICET. ELL, FA, and MSM are Doctoral fellows of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Candal.

Additional information

Responsible Editor: Vítor Pais Vilar

All figures were made using Prisma 5 (GraphPad Software, Inc.) and edited using Adobe Illustrator (Adobe Systems, Inc.).

Electronic supplementary material

ESM. 1

EMS Evolution of biomass and pH in the solution during the biological treatment with 4.5 g/L glucose and 500 mg/L IMZ. Biomass (●) and pH (--●--) at controlled pH. Biomass (■) and pH (--■--) at pHi 7.0 (GIF 10 kb)

High resolution image (TIFF 1393 kb)

ESM. 2

EMS Isotherm of IMZ adsorption by biomass. IMZ concentration range 0–600 mg/L; pH = 7.0; biomass dose = 1.5 g/L; period = 8 h (GIF 6 kb)

High resolution image (TIFF 1378 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Loveira, E., Ariganello, F., Medina, M.S. et al. Degradation alternatives for a commercial fungicide in water: biological, photo-Fenton, and coupled biological photo-Fenton processes. Environ Sci Pollut Res 24, 25634–25644 (2017). https://doi.org/10.1007/s11356-016-7602-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7602-4

Keywords

Navigation