Environmental Science and Pollution Research

, Volume 25, Issue 5, pp 3977–3984 | Cite as

Comparative study of dioxin contamination from forest soil samples (BZE II) by mass spectrometry and EROD bioassay

  • Florian MertesEmail author
  • John Mumbo
  • Marchela Pandelova
  • Silke Bernhöft
  • Claudia Corsten
  • Bernhard Henkelmann
  • Bernd M. Bussian
  • Karl-Werner Schramm
Effect-related evaluation of anthropogenic trace substances, -concepts for genotoxicity, neurotoxicity and, endocrine effects


Dioxins and dioxin-like compounds can be analyzed by bioanalytical screening methods to evaluate their biotoxicity. In vitro bioassays, based on 7-ethoxyresorufin-O-deethylase (EROD) and the activity of cytochrome P450 1A1 and the aryl hydrogen receptor (AhR) pathway, are employed for the evaluation of bioanalytical equivalents (BEQ) of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), and polychlorinated biphenyls (PCBs) from a wide variety of sample matrices. Here, we present the evaluation of 11 humic soil samples derived from forest stands across Germany and a comparison of the BEQ values against toxic equivalents (TEQ, PCDD/Fs+PCBs) derived by chemical analysis. BEQ values ranged from 8.8 to 34.1 while TEQ values from 13.9 to 60.5 pg/g dry weight. Additional two subsequent mineral layers were analyzed to identify the BEQ/TEQ gradient vertically, showing a TEQ decrease of 85.1 and 93.8 % from the humic to the first and second mineral layers, respectively. For BEQ values, a decrease as well as an increase was detected. BEQ measurements were performed with and without sample clean-up. Omitting clean-up revealed about 20 times increased BEQ values presumably due to non-persistent bioactive compounds not detected by chemical analysis. The results we present suggest that the EROD assay can be used for the screening of large sample quantities for the identification of samples showing dioxin and dioxin-like contaminations even at low levels, which can then be further analyzed by chemical analysis to identify the congener composition. The study also shows that EROD results give a qualitative image of the contamination. EROD seems to be interfered with cross-contaminants specifically for soils with high biological activity as forest layers.


EROD Bioassay Dioxin Bioanalytical screening Persistent organic pollutants Soil samples BEQ/TEQ HRGC/HRMS 



Dr. John Mumbo gratefully acknowledges the support from the Deutscher Akademischer Austauschdienst (DAAD) and National Council for Science and Technology-Kenya (NCST). The forest soil samples have been taken by the forest authorities of the federal states of Germany. Financial support from the environmental research fund of the federal minister of environment and nuclear safety in Germany (UFOPLAN FKZ 3707 71 201) is gratefully acknowledged.


  1. Aichner B, Bussian B, Lehnik-Habrink P, Hein S (2013) Levels and spatial distribution of persistent organic pollutants in the environment: a case study of German forest soils. Environ Sci Technol 47:12703–12714Google Scholar
  2. Aichner B, Bussian BM, Lehnik-Habrink P, Hein S (2015) Regionalized concentrations and fingerprints of polycyclic aromatic hydrocarbons (PAHs) in German forest soils. Environ Pollut 203:31–39Google Scholar
  3. Behnisch PA, Hosoe K, Sakai S (2001) Bioanalytical screening methods for dioxins and dioxin-like compounds a review of bioassay/biomarker technology. Environ Int 27:413–439CrossRefGoogle Scholar
  4. Brenerova P, Hamers T, Kamstra JH, Vondracek J, Strapacova S, Andersson PL, Machala M (2016) Pure non-dioxin-like PCB congeners suppress induction of AhR-dependent endpoints in rat liver cells. Environ Sci Pollut Res Int 23:2099–2107Google Scholar
  5. Brown SB et al. (2002) Dietary accumulation and biochemical responses of juvenile rainbow trout (Oncorhynchus mykiss) to 3,3 ',4,4 ',5-pentachlorobiphenyl (PCB 126. Aquat Toxicol 59:139–152CrossRefGoogle Scholar
  6. Donato MT, Gomez-Lechon MJ, Castell JV (1993) A microassay for measuring cytochrome P450IA1 and P450IIB1 activities in intact human and rat hepatocytes cultured on 96-well plates. Anal Biochem 213:29–33CrossRefGoogle Scholar
  7. Eichbaum K et al. (2014) In vitro bioassays for detecting dioxin-like activity—application potentials and limits of detection, a review. Sci Total Environ 487:37–48Google Scholar
  8. EU Regulation (2014) Commission Regulation (EU) No 589/2014 of 2 June 2014 laying down methods of sampling and analysis for the control of levels of dioxins, dioxin-like PCBs and non-dioxin-like PCBs in certain foodstuffs and repealing Regulation (EU) No 252/2012Google Scholar
  9. Government (1999) Federal soil protection and contaminated sites ordinance (BBodSchV). German Federal Law Gazette, BerlinGoogle Scholar
  10. Hilscherova K et al. (2003) Polychlorinated dibenzo-p-dioxin and dibenzofuran concentration profiles in sediments and flood-plain soils of the Tittabawassee River, Michigan. Environ Sci Technol 37:468–474CrossRefGoogle Scholar
  11. Li W, WZ W, Xu Y, Li L, Schramm KW, Kettrup A (2002) Measuring TCDD equivalents in environmental samples with the micro-EROD assay: comparison with HRGC/HRMS data. Bull Environ Contam Toxicol 68:111–117CrossRefGoogle Scholar
  12. Louiz I et al. (2008) Monitoring of dioxin-like, estrogenic and anti-androgenic activities in sediments of the Bizerta lagoon (Tunisia) by means of in vitro cell-based bioassays: contribution of low concentrations of polynuclear aromatic hydrocarbons (PAHs). Sci Total Environ 402:318–329Google Scholar
  13. Ritz C et al. (2015) Dose-Response Analysis Using R. PLoS One 10(12), e0146021Google Scholar
  14. Rotard W, Christmann W, Knoth W (1994) Background levels of PCDD/F in soils of Germany. Chemosphere 29:2193–2200CrossRefGoogle Scholar
  15. Schramm KW, Klimm C, Hofmaier A, Kettrup A (2001) Comparison of dioxin-like-response in vitro and chemical analysis of emissions and materials. Chemosphere 42:551–557CrossRefGoogle Scholar
  16. Schwirzer SM et al. (1998) Establishment of a simple cleanup procedure and bioassay for determining 2,3,7,8-tetrachlorodibenzo-p-dioxin toxicity equivalents of environmental samples. Ecotoxicol Environ Saf 41:77–82Google Scholar
  17. Tillitt DE, Ankley GT, Verbrugge DA, Giesy JP, Ludwig JP, Kubiak TJ (1991) H4IIE rat hepatoma cell bioassay-derived 2,3,7,8-tetrachlorodibenzo-p-dioxin equivalents in colonial fish-eating waterbird eggs from the Great Lakes. Arch Environ Contam Toxicol 21:91–101CrossRefGoogle Scholar
  18. Tysklind M et al. (1995) Inhibition of ethoxyresorufin-O-deethylase (EROD) activity in mixtures of 2,3,7,8-tetrachlorodibenzo-p-dioxin and polychlorinated biphenyls: EROD acitivity as biomarker in TCDD and PCB risk assessment. Environ Sci Pollut Res Int 2:211–216Google Scholar
  19. Van den Berg M et al. (1998) Toxic equivalency factors (TEFs) for PCBs. PCDDs, PCDFs for humans and wildlife Environ Health Persp 106:775–792Google Scholar
  20. Van den Berg M et al. (2006) The 2005 World Health Organization reevaluation of human and mammalian toxic equivalency factors for dioxins and dioxin-like compounds. Toxicol Sci 93:223–241CrossRefGoogle Scholar
  21. Villeneuve DL, Blankenship AL, Giesy JP (2000) Derivation and application of relative potency estimates based on in vitro bioassay results. Environ Toxicol Chem 19:2835–2843CrossRefGoogle Scholar
  22. Wellbrock N, Aydin CT, Block J, Deutschland Bundesministerium für Ernährung LuV (2006) Bodenzustandserhebung im Wald BZE II: Arbeitsanleitung für die Außenaufnahmen. BerlinGoogle Scholar
  23. Windal I, Denison MS, Birnbaum LS, Van Wouwe N, Baeyens W, Goeyens L (2005) Chemically activated luciferase gene expression (CALUX) cell bioassay analysis for the estimation of dioxin-like activity: critical parameters of the CALUX procedure that impact assay results. Environ Sci Technol 39:7357–7364CrossRefGoogle Scholar
  24. Zhang W, Sargis RM, Volden PA, Carmean CM, Sun XJ, Brady MJ (2012) PCB 126 and other dioxin-like PCBs specifically suppress hepatic PEPCK expression via the aryl hydrocarbon receptor. PLoS One 7:e37103CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Florian Mertes
    • 1
    Email author
  • John Mumbo
    • 1
  • Marchela Pandelova
    • 1
  • Silke Bernhöft
    • 1
  • Claudia Corsten
    • 1
  • Bernhard Henkelmann
    • 1
  • Bernd M. Bussian
    • 2
  • Karl-Werner Schramm
    • 1
    • 3
  1. 1.Helmholtz Zentrum München - German Research Center for Environmental Health (GmbH)Molecular EXposomicsNeuherbergGermany
  2. 2.Department of Waters and SoilUmweltbundesamtDessauGermany
  3. 3.Department für Biowissenschaftliche GrundlagenTUM, Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und UmweltFreisingGermany

Personalised recommendations