Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 22, pp 22606–22613 | Cite as

Determination of 210Po and 210Pb in red-capped scaber (Leccinum aurantiacum): bioconcentration and possible related dose assessment

  • Dagmara I. Strumińska-ParulskaEmail author
  • Karolina Szymańska
  • Grażyna Krasińska
  • Bogdan Skwarzec
  • Jerzy Falandysz
Research Article

Abstract

The paper presents the studies on 210Po and 210Pb activity determination in red-capped scaber (Leccinum aurantiacum (Bulliard) Gray) collected in northern Poland. The aims of the studies were to determine 210Po and 210Pb content in analyzed mushrooms, evaluate the bioconcentration levels, and estimate possible related annual effective radiation dose to mushrooms consumers. The activities of 210Po and 210Pb in red-capped scaber were un-uniform and depended on sampling sites. But 210Po and 210Pb activity concentrations did not reflect their concentrations in topsoil. The results showed that the consumption of analyzed mushrooms should not increase significantly the total effective radiation dose from 210Po and 210Pb decay.

Keywords

Polonium 210Po Radiolead 210Pb Mushrooms Soil Effective radiation dose 

Notes

Acknowledgments

The authors would like to thank the Ministry of Sciences and Higher Education for the financial support under grant DS/530-8635-D646-16. Many thanks to Dorota Chojnacka, Anna Jedrzejczyk, and Dorota Stenka for their technical help. This study was partly supported (samples collection) by the National Science Centre of Poland under grant code PRELUDIUM 2011/03/N/NZ9/04136 for Grażyna Krasińska.

References

  1. Babich H, Stotzky G (2005) Environmental factors that influence the toxicity of heavy, metal and gaseous pollutants to microorganisms. Crit Rev Microbiol 8:99–145. doi: 10.3109/10408418009081123 CrossRefGoogle Scholar
  2. Bem H (2005) Radioaktywność w środowisku naturalnym. PAN, ŁódźGoogle Scholar
  3. Calmon P, Thiry Y, Zibold G, Rantavaara A, Fesenko S (2009) Transfer parameter values in tempera the forest ecosystems a review. J Environ Radioact 100:767. doi: 10.1016/j.jenvrad.2008.11.005 CrossRefGoogle Scholar
  4. DRRiP – Departament Rozwoju Regionalnego i Przestrzennego (2000). http://pomorskie.eu/-/gleby-w-wojewodztwie-pomorskim. Accessed 12 June 2016
  5. Dobrzyński L, Droste E, Trojanowski W, Wołkiewicz R (2005) Spotkanie z promieniotwórczością. IPJ, ŚwierkGoogle Scholar
  6. Falandysz J, Bona H, Danisiewicz D (1994) Silver content of wild grown mushrooms from Northern Poland. Z Lebensm Unters Forsch 199:222–224. doi: 10.1007/BF01193449 CrossRefGoogle Scholar
  7. Falandysz J, Gucia M, Skwarzec B, Frankowska A, Klawikowska K (2002) Total mercury in mushrooms and underlying soil substrate from the Borecka Forest, Northeastern Poland. Arch Environ Contamin Toxicol 42:145–154. doi: 10.1007/s00244-001-0026-1 CrossRefGoogle Scholar
  8. Falandysz J, Gucia M, Brzostowski A, Kawano M, Bielawski L, Frankowska A, Wyrzykowska B (2003) Content and bioconcentration of mercury in mushrooms from northern Poland. Food Addit Contam 20:247–253. doi: 10.1080/0265203021000057485 CrossRefGoogle Scholar
  9. Falandysz J, Kowalewska I, Nnorom IC, Drewnowska M, Jarzyńska G (2012) Mercury in Red Aspen Boletes (Leccinum aurantiacum) mushrooms and the soils. J Environ Sci Health A 47:1695–1700. doi: 10.1080/10934529.2012.687277 CrossRefGoogle Scholar
  10. Gentili A, Gremingi G, Sabbatini V (1991) Ag-110m in fungi in central Italy after the Chernobyl accident. J Environ Radioact 13:75–78. doi: 10.1016/0265-931X(91)90040-M CrossRefGoogle Scholar
  11. Gminder A (2008) Atlas grzybów - jak bezbłędnie oznaczać 340 gatunków grzybów Europy Środkowej. Weltbild, WarszawaGoogle Scholar
  12. Gruter H (1964) Verhalteneinheimischer Pilzartengegeniiberdem Spaltprodukt 137Cs. Zeitschr Lebensmus Frosch 123(4):173–179Google Scholar
  13. Gruter H (1971) Radioactive fission product 137Cs in mushrooms in W. Germany during 1963–1970. Health Phys 20:655–666Google Scholar
  14. Guillen J, Baeza A (2014) Radioactivity in mushrooms: a health hazard? Food Chem 154:14–25. doi: 10.1016/j.foodchem.2013.12.083 CrossRefGoogle Scholar
  15. Guillen J, Baeza A, Ontalba MA, Miguez MP (2009) 210Pb and stable lead content in fungi: its transfer from soil. Sci Total Environ 407:4320–4326. doi: 10.1016/j.scitotenv.2009.03.025 CrossRefGoogle Scholar
  16. Gwynn J, Nalbandyan A, Rudolfsen G (2013) 210Po, 210Pb, 40K and 137Cs in edible wild berries and mushrooms and ingestion doses to man from high consumption rates of these wild foods. J Environ Radioact 116:34–41. doi: 10.1016/j.jenvrad.2012.08.016 CrossRefGoogle Scholar
  17. Heinrich G (1992) Uptake and transfer factors of 137Cs by mushrooms. Radiat Environ Biophys 31:39–49. doi: 10.1007/BF01211511 CrossRefGoogle Scholar
  18. Heiserman DL (1997) Księga pierwiastków chemicznych. Prószyński i S-ka, WarszawaGoogle Scholar
  19. Ibrahim SA, Whicker FW (1987) Plant accumulation and plant/soil concentration ratios of 210Pb and 210Po at various sites within a uranium mining and milling operations, Environ. Exp Bot 27(2):203–213. doi: 10.1016/0098-8472(87)90071-2 CrossRefGoogle Scholar
  20. ICRP (2012) The International Commission on Radiological Protection (2102) Compendium of Dose Coefficients based on ICRP Publication 60, ICRP Publ 119, Ann ICRP 41(Suppl). Elsevier, OttawaGoogle Scholar
  21. Jagielak J, Biernacka M, Henschke A, Sosińska A (1997) Radiologiczny Atlas Polski. PIOŚ, CLOR, PAA, Biblioteka Monitoringu Środowiska, WarszawaGoogle Scholar
  22. Kalač P (2001) A review of edible mushrooms radioactivity. Food Chem 72(2):219–222. doi: 10.1016/S0308-8146(01)00171-6 CrossRefGoogle Scholar
  23. Kalač P (2012) Radioactivity of European wild growing edible mushrooms. Nova Science Publ, HauppaugeGoogle Scholar
  24. Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281. doi: 10.1016/S0308-8146(99)00264-2 CrossRefGoogle Scholar
  25. Kostiainen E (2007) 123Cs in Finnish wild berries, mushrooms and game meat in 2000–2005. Boreal Environ Res 12(1):23–28, http://www.borenv.net/BER/pdfs/ber12/ber12-023.pdf Google Scholar
  26. Kubiak M (2008) Program ochrony środowiska wraz z planem gospodarki odpadami dla gminy Parchowo na lata 2008–2011 z uwzględnieniem perspektywy na lata 2012–2015. http://bip.parchowo.pl/upload/pliki/u-IV-20-z2.pdf. Accessed 12 June 2016
  27. Malinowska E, Szefer P, Bojanowski R (2006) Radionuclides content in Xerocomusbadius and other commercial mushrooms from several regions of Poland. Food Chem 97(1):19–24. doi: 10.1016/j.foodchem.2005.02.048 CrossRefGoogle Scholar
  28. Mazerski J (2009) Chemometria praktyczna. Malamut, WarszawaGoogle Scholar
  29. Melgar MJ, Alonso K, Garciá MA (2009) Mercury in edible mushrooms and soil. Bioconcentration factors and toxicological risk. Sci Total Environ 407:5328–5334. doi: 10.1016/j.scitotenv.2009.07.001 CrossRefGoogle Scholar
  30. Mleczek M, Siwulski M, Stuper-Szablewska K, Rissmann I, Sobieralski K, Goliński P (2013) Accumulation of elements by edible mushrooms species: Part I. Problem of trace element toxicity in mushrooms. J Environ Sci Health B 48:69–81. doi: 10.1080/03601234.2012.716733 CrossRefGoogle Scholar
  31. Ociepa E, Pachura P, Ociepa-Kubicka A (2014) Wpływ niekonwencjonalnego nawożenia na migrację metali ciężkich w układzie gleba-roślina. Inżynieria i Ochrona Środowiska 17(2):325–338Google Scholar
  32. Olszewski G, Boryło A, Skwarzec B (2015) A study on possible use of Urtica dioica (common nettle) plants as uranium (234U,238U) contamination bioindicator near phosphogypsum stockpile. J Radioanal Nucl Chem 23:6700–6708. doi: 10.1007/s10967-015-4302-3 Google Scholar
  33. Persson BRR, Holm E (2011) Polonium-210 and lead-210 in the terrestrial environment: a historical review. J Environ Radioact 102:420–429. doi: 10.1016/j.jenvrad.2011.01.005 CrossRefGoogle Scholar
  34. Perz P (2004) Jak szybko rosną grzyby? Bio-forum.pl, mimeo.Google Scholar
  35. Pietrzak-Flis Z, Chrzanowski E, Dembińska S (1997) Intake of 226Ra, 210Pb and 210Po with food in Poland. Sci Total Environ 203(2):157–165. doi: 10.1016/S0048-9697(97)00144-7 CrossRefGoogle Scholar
  36. Škubla P (2007) Wielki atlas grzybów. Elipsa, PoznańGoogle Scholar
  37. Skwarzec B (1995) Polon, uran i pluton w ekosystemie południowego Bałtyku. Rozprawy i monografie Instytutu Oceanografii PAN, SopotGoogle Scholar
  38. Skwarzec B (1997) Radiochemical methods for the determination of polonium, uranium and plutonium in environment. Chem Anal 42:107–115Google Scholar
  39. Skwarzec B (2010) Determination of radionuclides in aquatic environment (ed) Analytical measurement in aquatic environments. Tylor & Francis PE, London, pp 241–258Google Scholar
  40. Skwarzec B, Jakusik A (2003) 210Po bioaccumulation by mushrooms from Poland. J Environ Monit 5:791–794CrossRefGoogle Scholar
  41. Vaaramaa K, Solatie D, Aro L (2009) Distribution of 210Pb and 210Po concentrations in wild berries and mushrooms in boreal forest ecosystems. Sci Total Environ 408(1):84–91Google Scholar
  42. Zhang D, Zhang Y, Morawska E, Bielawski L, Krasińska G, Drewnowska M, Pankavec S, Szymańska K, Falandysz J (2013) Trace elements in Leccinum scabrum mushrooms and topsoil from Kłodzka Dale in Sudety Montains, Poland. J Mt Sci 10(4):621–627. doi: 10.1007/s11629-013-2384-3 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Dagmara I. Strumińska-Parulska
    • 1
    Email author
  • Karolina Szymańska
    • 1
  • Grażyna Krasińska
    • 1
  • Bogdan Skwarzec
    • 1
  • Jerzy Falandysz
    • 1
  1. 1.Environmental Chemistry and Radiochemistry DepartmentGdańsk UniversityGdańskPoland

Personalised recommendations