Laser-induced breakdown spectroscopy for elemental characterization of calcitic alterations on cave walls

Abstract

Cave walls are affected by different kinds of alterations involving preservative issues in the case of ornate caves, in particular regarding the rock art covering the walls. In this context, coralloids correspond to a facies with popcorn-like aspect belonging to the speleothem family, mostly composed of calcium carbonate. The elemental characterization indicates the presence of elements that might be linked to the diagenesis and the expansion of the alterations as demonstrated by prior analyses on stalagmites. In this study, we report the use of laser-induced breakdown spectroscopy (LIBS) to characterize the elemental composition of one coralloid sample with a portable instrument allowing punctual measurements and a laboratory mapping setup delivering elemental images with spatial resolution at the micrometric scale, being particularly attentive to Mg, Sr, and Si identified as elements of interest. The complementarity of both instruments allows the determination of the internal structure of the coralloid. Although a validation based on a reference technique is necessary, LIBS data reveal that the external layer of the coralloid is composed of laminations correlated to variations of the LIBS signal of Si. In addition, an interstitial layer showing high LIBS signals for Fe, Al, and Si is interpreted to be a detrital clay interface between the external and the internal part of the coralloid. These preliminary results sustain a possible formation scenario of the coralloid by migration of the elements from the bedrock.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Baskar S, Baskar R, Routh J (2011) Biogenic evidences of moonmilk deposition in the Mawmluh Cave, Meghalaya, India. Geomicrobiol J 28(3):252–265

    Article  Google Scholar 

  2. Bindschedler S, Millière L, Cailleau G, Job D, Verrecchia EP (2012) An ultrastructural approach to analogies between fungal structures and needle fiber calcite. Geomicrobiol J 29(4):301–313

    CAS  Article  Google Scholar 

  3. Borsato A, Frisia S, Jones B, Van der Borg K (2000) Calcite moonmilk: crystal morphology and environment of formation in caves in the Italian Alps. J Sed Res 70(5):12

    Article  Google Scholar 

  4. Borsato A, Frisia S, Fairchild IJ, Somogyi A, Susini J (2007) Trace element distribution in annual stalagmite laminae mapped by micrometer-resolution X-ray fluorescence: implications for incorporation of environmentally significant species. Geochim Cosmochim Ac 71(6):1494–1512

    CAS  Article  Google Scholar 

  5. Bourdin C, Douville E, Genty D (2011) Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France. Chem Geol 290(1-2):1–11

    CAS  Article  Google Scholar 

  6. Cacchio P, Ferrini G, Ercole C, Del Gallo M, Lepidi A (2014) Biogenicity and characterization of moonmilk in the Grotta Nera (Majella National Park, Abruzzi, Central Italy. J Cave Karst Stud 76(2):15

    Article  Google Scholar 

  7. Caddeo GA, Railsback LB, De Waele J, Frau F (2015) Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: the interplay of substrate, water supply, degassing, and evaporation. Sediment Geol 318:130–141

    CAS  Article  Google Scholar 

  8. Cailleau G, Verrechia EP, Braissant O, Laurent E (2009) The biogenic origin of needle fiber calcite. Sedimentology 56(6):1858–1875

    CAS  Article  Google Scholar 

  9. Canaveras JC, Cuezva S, Sanchez-Moral S, Lario J, Laiz L, Gonzalez JM, Saiz-Jimenez C (2006) On the origin of fiber calcite crystals in moonmilk deposits. Naturwissenschaften 93(1):27–32

    CAS  Article  Google Scholar 

  10. Cremers, D. A., L. J. Radziemski (2013). Handbook of laser-induced breakdown spectroscopy. Wiley

  11. Cuñat J, Fortes FJ, Cabalín LM, Carrasco F, Simón MD, Laserna JJ (2008) Man-portable laser-induced breakdown spectroscopy system for in situ characterization of karstic formations. Appl Spectrosc 62(11):1250–1255

    Article  Google Scholar 

  12. Curry MD, Boston PJ, Spilde MN, Baichtal JF, Campbell AR (2009) Cottonballs, a unique subaqeous moonmilk, and abundant subaerial moonmilk in Cataract Cave, Tongass National Forest, Alaska. Int J Speleol 38(2):17

    Article  Google Scholar 

  13. De Carvalho GGA, Santos D Jr, Da Silva Gomes M, Nunes LC, Guerra MBB, Krug FJ (2015) Influence of particle size distribution on the analysis of pellets of plant materials by laser-induced breakdown spectroscopy. Spectrochim Acta B105:130–135

    Article  Google Scholar 

  14. Devès G, Perroux A-S, Bacquart T, Plaisir C, Rose J, Jaillet S, Ghaleb B, Ortega R, Maire R (2012) Chemical element imaging for speleothem geochemistry: application to a uranium-bearing corallite with aragonite diagenesis to opal (Eastern Siberia, Russia). Chem Geol 294-295:190–202

    Article  Google Scholar 

  15. El Haddad J, Canioni L, Bousquet B (2014) Good practices in LIBS analysis: review and advices. Spectrochim Acta B 101:171–182

    CAS  Article  Google Scholar 

  16. Fairchild IJ, Treble PC (2009) Trace elements in speleothems as recorders of environmental change. Quaternary Sci Rev 28(5-6):449–468

    Article  Google Scholar 

  17. Fairchild IJ, Baker A, Borsato A, Frisia S, Hinton RW, McDermott F, Tooth AF (2001) Annual to sub-annual resolution of multiple trace-element trends in speleothems (English). J Geol Soc London 158(5):831–841

    CAS  Article  Google Scholar 

  18. Fairchild IJ, Smith CL, Baker A, Fuller L, Spötl C, Mattey D, McDermott F, E.I.M.F (2006) Modification and preservation of environmental signals in speleothems. Earth Sci Rev 75(1-4):105–153

    CAS  Article  Google Scholar 

  19. Fortes F, Laserna J (2010) The development of fieldable laser-induced breakdown spectrometer: no limits on the horizon. Spectrochim Acta B 65:975–990

    Article  Google Scholar 

  20. Galbács G, Kevei-Bárány I, Szőke E, Jedlinszki N, Gornushkin IB, Galbács MZ (2011) A study of stalagmite samples from Baradla Cave (Hungary) by laser induced plasma spectrometry with automatic signal correction. Microchem J 99(2):406–414

    Article  Google Scholar 

  21. Hahn DW, Omenetto N (2012) Laser-induced breakdown spectroscopy (LIBS), part II: review of instrumental and methodological approaches to material analysis and applications to different fields. Appl Spectrosc 66:347–419

    CAS  Article  Google Scholar 

  22. Hill, C. A. and P. Forti (1997). Cave minerals of the world, National speleological society

  23. James NP (1972) Holocene and Pleistocene calcareous crust (caliche) profiles: criteria for subaerial exposure. J of Sediment Res 42(4):817–836

    CAS  Google Scholar 

  24. Kuhn K, Meima JA, Rammlmair D, Ohlendorf C (2016) Chemical mapping of mine waste drill cores with laser-induced breakdown spectroscopy (LIBS) and energy dispersive X-ray fluorescence (EDXRF) for mineral resource exploration. J Geochem Explor 161:72–84

    CAS  Article  Google Scholar 

  25. Lacanette D, Large D, Ferrier C, Aujoulat N, Bastian F, Denis A, Jurado V, Kervazo B, Konik S, Lastennet R, Malaurent P, Saiz-Jimenez C (2013) A laboratory cave for the study of wall degradation in rock art caves: an implementation in the Vézère area. J Archaeol Sci 40(2):894–903

    Article  Google Scholar 

  26. Lacelle D, Lauriol B, Clark ID (2004) Seasonal isotopic imprint in moonmilk from Caverne de l'Ours (Quebec, Canada): implications for climatic reconstruction. Can J Earth Sci 41(12):1411–1423

    CAS  Article  Google Scholar 

  27. Ma QL, Motto-Ros V, Lei WQ, Boueri M, Zheng LJ, Zeng HP, Bar-Matthews M, Ayalon A, Panczer G, Yu J (2010) Multi-elemental mapping of a speleothem using laser-induced breakdown spectroscopy. Spectrochim Acta B 65(8):707–714

    Article  Google Scholar 

  28. Martinez-Arkarazo I, Angulo M, Zuloaga O, Usobiaga A, Madariaga JM (2007) Spectroscopic characterisation of moonmilk deposits in Pozalagua tourist cave (Karrantza, Basque Country, North of Spain). Spectrochim Acta A Mol 68(4):1058–1064

    CAS  Article  Google Scholar 

  29. McMillan NJ, Rees S, Kochelek K, McManus C (2014) Geological applications of laser-induced breakdown spectroscopy. Geostand and Geoanal Res 38(3):329–343

    CAS  Article  Google Scholar 

  30. Miziolek, A.W., V. Palleschi and I. Schechter (2008). Laser induced breakdown spectroscopy. Cambridge University Press

  31. Motto-Ros V, Sancey L, Wang XC, Ma QL, Lux F, Bai XS, Panczer G, Tillement O, Yu J (2013) Mapping nanoparticles injected into a biological tissue using laser-induced breakdown spectroscopy. Spectrochim Acta B 87:168–174

    CAS  Article  Google Scholar 

  32. Motto-Ros V, Negre E, Pelascini F, Panczer G, Yu J (2014) Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy. Spectrochim Acta B 92:60–69

    CAS  Article  Google Scholar 

  33. Negre E, Motto-Ros V, Pelascini F, Lauper S, Denis D, Yu J (2015) On the performance of laser-induced breakdown spectroscopy for quantitative analysis of minor and trace elements in glass. J Anal At Spectrom 30:417–425

    CAS  Article  Google Scholar 

  34. Noll R (2012) Laser-induced breakdown spectroscopy: fundamentals and applications. Springer, Berlin Heidelberg

    Google Scholar 

  35. Phillips SE, Self PG (1987) Morphology, crystallography and origin of needle fiber calcite in quaternary calcretes of South Australia. Aust J Soil Res 25(4):429–444

    CAS  Article  Google Scholar 

  36. Sancey L, Motto-Ros V, Busser B, Kotb S, Benoit JM, Piednoir A, Lux F, Tillement O, Panczer G, Yu J (2014) Laser spectrometry for multi-elemental imaging of biological tissues. Sci Rep 4:6065

    CAS  Article  Google Scholar 

  37. Sanchez-Moral S, Portillo MC, Janices I, Cuezva S, Fernández-Cortés A, Cañaveras JC, Gonzalez JM (2012) The role of microorganisms in the formation of calcitic moonmilk deposits and speleothems in Altamira Cave. Geomorphology 139-140:285–292

    Article  Google Scholar 

  38. Sheta SA, Di Carlo G, Ingo GM, Harith MA (2016) Surface morphology study of some Cu–Ni reference alloys using laser induced breakdown spectroscopy. Mater Chem Phys 173:516–523

    CAS  Article  Google Scholar 

  39. Sinclair DJ, Banner JL, Taylor FW, Partin J, Jenson J, Mylroie J, Goddard E, Quinn T, Jocson J, Miklavič B (2012) Magnesium and strontium systematics in tropical speleothems from the Western Pacific. Chem Geol 294-295:1–17

    CAS  Article  Google Scholar 

  40. Spizzichino V, Fantoni R (2014) Laser induced breakdown spectroscopy in archeometry: a review of its application and future perspectives. Spectrochim Acta B 99:201–209

    CAS  Article  Google Scholar 

  41. Vadillo JM, Vadillo I, Carrasco F, Laserna JJ (1998) Spatial distribution profiles of magnesium and strontium in speleothems using laser-induced breakdown spectrometry. J Anal Chem 361:119–123

    CAS  Article  Google Scholar 

  42. Verrecchia EPVKE (1994) Needle-fiber calcite: a critical review and a proposed classification. J of Sediment Res 64(3)

  43. White W (2012) Speleothem microstructure/speleothem ontogeny: a review of Western contributions. Int J of Speleol 41(2):329–358

    Article  Google Scholar 

Download references

Acknowledgments

This study has been carried out with financial support from the Conseil Régional d’Aquitaine and the French State, managed by the French National Research Agency (ANR) in the frame of “the investments for the future” Programme IdEx Bordeaux. The authors are also grateful to Mr. Delbos, landowner of the Leye cave, namely the laboratory cave.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Léna Bassel.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bassel, L., Motto-Ros, V., Trichard, F. et al. Laser-induced breakdown spectroscopy for elemental characterization of calcitic alterations on cave walls. Environ Sci Pollut Res 24, 2197–2204 (2017). https://doi.org/10.1007/s11356-016-7468-5

Download citation

Keywords

  • LIBS
  • Laser-induced breakdown spectroscopy
  • Speleothems
  • Alterations
  • Ornated cave
  • Conservation