Skip to main content
Log in

Assessment of nitrate transport parameters using the advection-diffusion cell

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study aimed to better understand nitrate transport in the soil system in a part of the state of North Rhine-Westphalia, in Germany, and to aid in the development of groundwater protection plans. An advection-diffusion (AD) cell was used in a miscible displacement experiment setup to characterize nitrate transport in 12 different soil samples from the study area. The three nitrate sorption isotherms were tested to define the exact nitrate interaction with the soil matrix. Soils varied in their properties which in its turn explain the variations in nitrate transport rates. Soil texture and organic matter content showed to have the most important effect on nitrate recovery and retardation. The miscible displacement experiment indicated a decrease in retardation by increasing sand fraction, and an increase in retardation by increasing soil organic matter content. Soil samples with high sand fractions (up to 94 %) exhibited low nitrate sorption capacity of less than 10 %, while soils with high organic matter content showed higher sorption of about 30 %. Based on parameterization for nitrate transport equation, the pore water velocity for both sandy and loamy soils were significantly different (P < 0.001). Pore water velocity in sandy soil (about 4 × 10−3 m/s) was about 100 to 1000 larger than in loamy soils (8.7 × 10−5 m/s). On the other hand, the reduction in nitrate transport in soils associated with high organic matter was due to fine pore pathways clogged by fine organic colloids. It is expected that the existing micro-phobicity increased the nitrate recovery from 9 to 32 % resulting in maximum diffusion rates of about 3.5 × 10−5 m/s2 in sandy soils (sample number CS-04) and about 1.4 × 10−7 m/s2 in silt loam soils (sample number FS-02).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Addiscott T (2006) Perspective—is it nitrate that threatens life or the scare about nitrate? J Sci Food Agric 86:2005–2009

    Article  CAS  Google Scholar 

  • Al-Darby AM, Abdel-Nasser G (2006) Nitrate leaching through unsaturated soil columns: comparison between numerical and analytical solutions. J Appl Sci 6:735–743

    Article  CAS  Google Scholar 

  • Aljazzar T (2010) Adjustment of DRASTIC vulnerability index to assess groundwater vulnerability for nitrate pollution using the advection-diffusion cell. Dissertation, RWTH Aachen University, Germany, ISBN: 3–86130–621-2

  • Allred B, Brown G, Bigham J (2007) Nitrate mobility under unsaturated conditions in four initially dry soils. J Soil Sci 172(1):27–41

    Article  CAS  Google Scholar 

  • Andrade A, Stigter TY (2009) Multi-method assessment of nitrate and pesticide contamination in shallow alluvial groundwater as a function of hydrogeological setting and land use. Agric Water Manag 96:1751–1765

    Article  Google Scholar 

  • Bear J (1970) Dynamics of fluid in porous media. Elsevier, New York

    Google Scholar 

  • Bellini G, Sumner ME, Radcliffe DE, Qafoku NP (1996) Anion transport through columns of highly weathered acid soils: adsorption and retardation. Soil Sci Soc Am J 60:132–137

    Article  CAS  Google Scholar 

  • Black AS, Waring SA (1976) Nitrate leaching and adsorption in a Krasnozem from Redland Bay—old II, soil factors influencing adsorption. Aust J Soil Res 14:181–188

    Article  CAS  Google Scholar 

  • Black AS, Waring SA (1979) Adsorption of nitrate, chloride and sulfate by some highly weathered soils from south-East Queensland. Aust J Soil Res 17:271–282

    Article  CAS  Google Scholar 

  • Blake GR, Hartge KH (1986) Bulk density. In methods of soil analysis. In: Klute A (ed) Part 1: physical and mineralogical methods, Agronomy, vol 9, 2nd edn. American Society of Agronomy (ASA), Madison, WI, pp. 363–382

    Google Scholar 

  • Bond WJ, Phillips IR (1990) Cation exchange isotherms obtained with batch and miscible-displacement techniques. Soil Sci Soc Am J 54:722–728

    Article  CAS  Google Scholar 

  • Bronswijk JJB, Hamminga W, Oostindie K (1995) Rapid nutrient leaching to groundwater and surface water in clay soil areas. Eur J Agron 4:431–439

    Article  Google Scholar 

  • Cahn MD, Bouldin DR, Cravo MS (1992) Nitrate sorption in the profile of an acid soil. Plant Soil 143:179–183

    Article  CAS  Google Scholar 

  • Choi SW, Preusser F, Radtke U (2007) Dating of lower-terrace sediments from the middle Rhine area, Germany. Quat Geochronol 2:137–142

    Article  Google Scholar 

  • Di Toro DM, Mahony JD, Kirchgraber PR, O’Byrne AL, Pasquale LR, Piccirilli DC (1986) Effects of nonreversibility, particle concentration, and ionic strength on heavy metal sorption. Environ Sci Technol 20:55–61

    Article  CAS  Google Scholar 

  • Duwig C, Ecquer TB, Harlet LC, Lothier BEC (2003) Estimation of nitrate retention in a Ferralsol by a transient-flow method. Eur J Soil Sci 54:505–515

    Article  CAS  Google Scholar 

  • Eick MJ, Brady WD, Lynch CK (1999) Charge properties and nitrate adsorption of some acid south-eastern soils. J Environ Qual 28:138–144

    Article  CAS  Google Scholar 

  • Flint CM, Harrison RB, Strahm BD, Adams AB (2008) Nitrogen leaching from Douglas-fir forests after urea fertilization. J Environ Qual 37:1781–1788

    Article  CAS  Google Scholar 

  • Gee GW, Bauder RH (1986) Particle-size analysis. In: Klute A (ed) Methods of soil analysis. ASA, Madison, WI, pp. 383–411

    Google Scholar 

  • Grossman RB, Reinsch TG (2002) Bulk density and linear extensibility. In: Dane JH, C. TG (eds) In methods of soil analysis. SSSA, Madison, WI, pp. 201–228

    Google Scholar 

  • Haag D, Kaupenjohann M (2001) Landscape fate of nitrate fluxes and emissions in Central Europe: a critical review of concepts, data, and models for transport and retention. Agric Ecosyst Environ 86(1):1–21

    Article  CAS  Google Scholar 

  • Hamad Y (2003) Geotechnische und Stofftransporteigenschaften von mit Zeolithen vergüteten Dichtugsstoffen, Mitteilungen zur Ingenieurgeologie und Hydrogeologie, RWTH Aachen

  • Hayter AJ (1984) A proof of the conjecture that the Tukey-Kramer multiple comparisons procedure is conservative. Ann Math Stat 12:61–75

    Article  Google Scholar 

  • Herrmann F, Janke C, Jenn F, Kunkel R, Voigt HJ, Wendland F (2009) Groundwater recharge rates for regional groundwater modelling: a case study using GROWA in the Lower Rhine lignite mining area. Ger Hydrogeol J. doi:10.1007/s10040-009-0493-4

    Google Scholar 

  • Igler BA, Totsche KU, Knabner P (1998) Identification of nonlinear sorption isotherms by soil column breakthrough experiments. Physics and Chemistry of the Earth 23:215–219

  • JMP (2015) JMP version 10, statistics and graphics guide. : SAS Institute Incorporation, Cary

    Google Scholar 

  • Jury W, Flühler H (1992) Transport of chemicals through soil: mechanisms, models, and field applications. Adv Agron 47:141–201

    Article  CAS  Google Scholar 

  • Katou H, Clothier BE, Green SR (1996) Anion transport involving competitive adsoprtion during transient water flow in an andisol. Soil Sci Soc Am J 60:1368–1375

    Article  CAS  Google Scholar 

  • Khalil MI, Rahman MS, Schmidhalter U, Olfs HW (2007) Nitrogen fertilizer-induced mineralization of soil organic C and N in six contrasting soils of Bangladesh. J Plant Nutr Soil Sci 170:210–218

    Article  Google Scholar 

  • Kim Y, Burger A (1997) Nitrogen transformations and soil processes in a wastewater-irrigated mature appalachian hardwood forest. J For Ecol Manag 90:1–11

    Article  Google Scholar 

  • Koehler K, Duynisveld WHM, Boettcher J (2006) Nitrogen fertilization and nitrate leaching into groundwater on arable sandy soils. J Plant Nutr Soil Sci 169:185–195

    Article  CAS  Google Scholar 

  • Korom S (1992) Natural denitrification in the saturated zone: a review. J Water Resour Res 28:1657–1668

    Article  CAS  Google Scholar 

  • Kowalenko CG, Yu S (1995) Assessment of nitrate adsorption in soils by extraction, equilibrium and column-leaching methods. Agric Agri-Food Can 537

  • Kramer SB, Reganold JP, Glover JD, Bohannan B, Mooney HA (2006) Reduced nitrate leaching and enhanced denitrifier activity and efficiency in organically fertilized soils. Proc Natl Acad Sci 103(12)

  • Kros J, Tietema A, Mol-Dijkstra JP, de Vries W (2004) Quantification of nitrate leaching from forest soils on a national scale in the Netherlands. Hydrology and Earth Systems Sciences 8:831–822

    Article  Google Scholar 

  • Lambarki M (2006) Entwicklung eines naturnahen Bewertungsverfahrens für die Gefährdungsabschätzung von Altlastverdachtsflächen und Verwertungsmaterialien - ein Beitrag zum Grundwasserschutz, Mitteilungen zur Ingenieurgeologie und Hydrogeologie, RWTH Aachen

  • Lee MJ, Hwang SI, Ro HM (2014) Interpreting the effect of soil texture on transport and removal of nitrate-N in saline coastal tidal flats under steady-state flow condition. Cont Shelf Res 84:35–42

    Article  Google Scholar 

  • Luo Y, Qiao X, Song J, Christie P, Wong M (2003) Use of a multi-layer column device for study on leachability of nitrate in sludge-amended soils. Chemosphere 52:1483–1488

    Article  CAS  Google Scholar 

  • Maraqa MA (2001) Prediction of mass-transfer coefficient for solute transport in porous media. J Contam Hydrol 53(1–2):153–171

    Article  CAS  Google Scholar 

  • Miller DM, Sumner ME, Miller WP (1989) A comparison of batch- and flow-generated anion adsorption isotherms. Soil Sci Soc Am J 53:373–380

    Article  CAS  Google Scholar 

  • MUNLV - Ministerium für Umwelt und Naturschutz, Landwirtschaft und Verbraucherschutz des Landes Nordrhein-Westfalen (2008) Bewirtschaftungsplan und Maßnahmenprogramm für die Gewässer und das Grundwasser in Nordrhein-Westfalen

  • Nelson DW, Sommers LE (1996) Total carbon, organic carbon, and organic matter. In: Sparks DL (ed) Methods of soil analysis. SSSA, Madison, WI, pp. 961–1010

    Google Scholar 

  • Prado B, Duwig C, Etchevers J, Gaudet JP, Vauclin M (2011) Nitrate fate in a Mexican andosol: is it affected by preferential flow? Agric Water Manag 98(9):1441–1450

    Article  Google Scholar 

  • Qafoku NP, Sumner ME (2001) Retention and transport of calcium nitrate in variable charge subsoils. Soil Sci 166(5)

  • Qafoku NP, Sumner ME (2002) Adsorption and desorption of indifferent ions in variable charge subsoils: the possible effect of particle interaction on the counter-ion charge density. Soil Sci Soc Am J 66:1231–1239

    Article  CAS  Google Scholar 

  • Qafoku NP, Sumner ME, Radcliffe DE (2000) Anion transport in columns of variable charge subsoils: nitrate and chloride. Soil Sci Soc Am J 29:484–493

    CAS  Google Scholar 

  • Sansoulet J, Cabidoche YM, Cattan P (2007) Adsorption and transport of nitrate and potassium in an andosol under banana (Guadeloupe, French West Indies). Eur J Soil Sci 58(2):478–489

    Article  CAS  Google Scholar 

  • Schaefer A, Utescher T, Klett M, Valdivia-Manchego M (2005) The Cenozoic Lower Rhine Basin—rifting, sedimentation, and cyclic stratigraphy. Int J Earth Sci 94:621–639

    Article  Google Scholar 

  • Scott HD (2000) Soil physics, agricultural and environmental applications. Iowa State University Press

  • Singh B, and Kanehiro Y (1969) Adsorption of nitrate in amorphous and kaolinite Hawaiian soils. University of Hawaii, Technical Paper No. 1079

  • Spalding RF, Watts DG, Schepers JS, Burbach ME, Exner ME, Poreda RJ, Martin GE (2001) Controlling nitrate leaching in irrigated agriculture. J Environ Qual 30:1184–1194

    Article  CAS  Google Scholar 

  • Sparks DL, Reichcigl JE (1982) Comparison of batch and miscible displacement techniques to describe potassium adsorption kinetics in Delaware soils. Soil Sci Soc Am J 46:875–879

    Article  CAS  Google Scholar 

  • Strahm BD, Harrison RB (2006) Nitrate sorption in a variable-charge forest soil of the Pacific Northwest. Soil Sci 171(4)

  • Thomas GW (1996) Soil pH and soil acidity. In: Sparks DL (ed) Methods of soil analysis. SSSA, Madison, WI, pp. 475–490

    Google Scholar 

  • Tukey J (1991) The philosophy of multiple comparisons. Stat Sci 6:100–116

    Article  Google Scholar 

  • Uehara G, Gillman GP (1980) Charge characteristics of soils with variable and permanent charge minerals: I. Theory. Soil Sci Soc Am J 44:250–252

    Article  CAS  Google Scholar 

  • Van Genuchten MT, and Alves, WJ (1982) Analytical solutions of the one-dimensional convective-dispersive solute transport equation. USDA Technical Bulletin (1661)

  • Wakida T, Lerner N (2005) Non-agricultural sources of groundwater nitrate: a review and case study. J Water Res 39:3–16

    Article  CAS  Google Scholar 

  • Wendland F, Bach M, Kunkel R (1998) The influence of nitrate reduction strategies on the temporal development of the nitrate pollution of soil and groundwater throughout Germany—a regionally differentiated case study. Nutr Cycl Agroecosyst 50:167–179

    Article  CAS  Google Scholar 

  • Wong MTF, and Hughes R, and Rowell DL (1990) The retention of nitrate in acid soils from the tropics. Soil Use Manage 6(2)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taiseer Aljazzar.

Additional information

Responsible editor: Marcus Schulz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aljazzar, T., Al-Qinna, M. Assessment of nitrate transport parameters using the advection-diffusion cell. Environ Sci Pollut Res 23, 23145–23157 (2016). https://doi.org/10.1007/s11356-016-7457-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7457-8

Keywords

Navigation