Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 21, pp 21969–21979 | Cite as

Adsorption of arsenic from water and its recovery as a highly active photocatalyst

  • Rodrigo C. Hott
  • Thaina G. Andrade
  • Mayra S. Santos
  • Anne C. F. Lima
  • Márcia C. S. Faria
  • Cleide A. Bomfeti
  • Fernando Barbosa
  • Luiz F. O. Maia
  • Luiz C. A. Oliveira
  • Márcio C. Pereira
  • Jairo L. RodriguesEmail author
Research Article

Abstract

The contamination of water with arsenic has aroused concern around the world due to its toxic effects. Thus, the development of low-cost technologies for treating water contaminated with toxic metals is highly advisable. Adsorption is an attractive technology for purification of contaminated water, but it only transfers the contaminant from water to the solid adsorbent, which provokes another problem related to solid residue disposal. In this work, we developed a sustainable method for purifying water contaminated with arsenic by using δ-FeOOH nanoparticles. The adsorption capacities of nanomaterial for As3+ and As5+ species were 40 and 41 mg g−1, respectively, and were highly efficient to purify arsenic-contaminated water from a Brazilian river. The concentration of arsenic in water was close to zero after the water treatment by δ-FeOOH. Once the arsenic is adsorbed, it can be recovered by treatment with NaOH solutions. Approximately 85 % of the total adsorbed arsenic could be recovered and used as a precursor to produce useful material (Ag3AsO4) with excellent photocatalytic activity. It was active under visible light and had a high recyclability for oxidation of rhodamine B. Finally, the simple method described is promising to design sustainable process of environmental remediation with minimum residue generation.

Keywords

Arsenate Contaminated water Remediation Adsorption Photocatalyst Iron oxide 

Notes

Acknowledgments

The authors are grateful to CNPq, Fapemig, Rede Mineira de Química (RQ-MG), Fapesp, and CAPES for the financial support and fellowships.

References

  1. Ali I, Al-Othman ZA, Alwarthan A, Asim M, Khan TA (2014) Removal of arsenic species from water by batch and column operations on bagasse fly ash. Environ Sci Pollut Res 21(5):3218–3229CrossRefGoogle Scholar
  2. Andjelkovic I, Tran DNH, Kabiri S, Azari S, Markovic M, Losic D (2015) Graphene aerogels decorated with α-FeOOH nanoparticles for efficient adsorption of arsenic from contaminated waters. ACS Appl Mater Interfaces 7(18):9758–9766CrossRefGoogle Scholar
  3. Andrade RP, Santana Filho S, De Mello JWV, De Figueiredo BR, Dussin TM (2008) Arsenic mobilization from sulfidic materials from gold mines in Minas Gerais State. Quim Nov. 31(5):1127–1130Google Scholar
  4. Aredes S, Klein B, Pawlik M (2012) The removal of arsenic from water using natural iron oxide minerals. J Clean Prod 29–30, 208–213Google Scholar
  5. Bang S, Patel M, Lippincott L, Meng X (2005) Removal of arsenic from groundwater by granular titanium dioxide adsorbent. Chemosphere 60(3):389–397CrossRefGoogle Scholar
  6. Basu H, Singhal RK, Pimple MV, Reddy AVR (2015) Arsenic removal from groundwater by goethite impregnated calcium alginate beads. Water Air Soil Pollut 226(2):1–11CrossRefGoogle Scholar
  7. Belessi V, Romanos G, Boukos N, Lambropoulou D, Trapalis C (2009) Removal of reactive red 195 from aqueous solutions by adsorption on the surface of TiO2 nanoparticles. J Hazard Mater 170(2–3):836–844CrossRefGoogle Scholar
  8. Blanc LR, Moreira FS, Gonçalves AM, Manchester RSSA, Baroni L, da Silva Faria MC, Bomfeti CA, Barbosa F, Rodrigues JL (2013) Contamination in a Brazilian river: a risk of exposure to untreated effluents. J Environ Qual 42(5):1596–1601CrossRefGoogle Scholar
  9. Chagas P, Da Silva AC, Passamani EC, Ardisson JD, De Oliveira LCA, Fabris JD, Paniago RM, Monteiro DS, Pereira MC (2013) δ-FeOOH: a superparamagnetic material for controlled heat release under AC magnetic field. J Nanopart Res 15(4):1–7CrossRefGoogle Scholar
  10. Chammui Y, Sooksamiti P, Naksata W, Thiansem S, Arqueropanyo OA (2014) Removal of arsenic from aqueous solution by adsorption on Leonardite. Chem Eng J 240:202–210CrossRefGoogle Scholar
  11. Chen ML, Sun Y, Huo CB, Liu C, Wang JH (2015) Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level. Chemosphere 130:52–58CrossRefGoogle Scholar
  12. Companhia de Tecnologia e Saneamento Ambiental (2011) Coleta de amostras de águas de rios. Companhia Ambiental do Estado de São Paulo, São Paulo, Brazil. Disponible: www.cetesb.sp.gov.br. Accessed May 2015
  13. Dutta PK, Ray AK, Sharma VK, Millero FJ (2004) Adsorption of arsenate and arsenite on titanium dioxide suspensions. J Colloid Interface Sci 278(2):270–275CrossRefGoogle Scholar
  14. Faria MCS, Rosemberg RS, Bomfeti CA, Monteiro DS, Barbosa F, Oliveira LCA, Rodriguez M, Pereira MC, Rodrigues JL (2014) Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents. Chem Eng J 237:47–54CrossRefGoogle Scholar
  15. Ghosh MK, Poinern GEJ, Issa TB, Singh P (2012) Arsenic adsorption on goethite nanoparticles produced through hydrazine sulfate assisted synthesis method. Korean J Chem Eng 29(1):95–102CrossRefGoogle Scholar
  16. Hao L, Zheng T, Jiang J, Hu Q, Li X, Wang P (2015) Removal of As(III) from water using modified jute fibres as a hybrid adsorbent. RSC Adv 5(14):10723–10732CrossRefGoogle Scholar
  17. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465CrossRefGoogle Scholar
  18. Huang YH, Shih YJ, Cheng FJ (2011) Novel KMnO4-modified iron oxide for effective arsenite removal. J Hazard Mater 198:1–6CrossRefGoogle Scholar
  19. Jia Y, Luo T, Yu XY, Jin Z, Sun B, Liu JH, Huang XJ (2013) Facile one-pot synthesis of lepidocrocite (γ-FeOOH) nanoflakes for water treatment. New J Chem 37(8):2551–2556CrossRefGoogle Scholar
  20. Lagergren S (1898) About the theory of so-called adsorption of soluble substance. Kungliga Svenska Vetenskapsakademiens Handlingar 24:1–39Google Scholar
  21. Li Z, Jiang WT, Jean JS, Hong H, Liao L, Lv G (2011) Combination of hydrous iron oxide precipitation with zeolite filtration to remove arsenic from contaminated water. Desalination 280(1–3):203–207CrossRefGoogle Scholar
  22. Luther S, Borgfeld N, Kim J, Parsons JG (2012) Removal of arsenic from aqueous solution: a study of the effects of pH and interfering ions using iron oxide nanomaterials. Microchem J 101:30–36CrossRefGoogle Scholar
  23. Pereira MC, Garcia EM, Cândido Da Silva A, Lorenon E, Ardisson JD, Murad E, Fabris JD, Matencio T, De Castro Ramalho T, Rocha MVJ (2011) Nanostructured δ-FeOOH: a novel photocatalyst for water splitting. J Mater Chem 21(28):10280–10282CrossRefGoogle Scholar
  24. Pinto, I.S.X., Pacheco, P.H.V.V., Coelho, J.V., Lorençon, E., Ardisson, J.D., Fabris, J.D., de Souza, P.P., Krambrock, K.W.H., Oliveira, L.C.A. and Pereira, M.C. 2012 Nanostructured δ-FeOOH: an efficient Fenton-like catalyst for the oxidation of organics in water. Appl Catal B: Environ 119–120, 175–182Google Scholar
  25. Prasad KS, Gandhi P, Selvaraj K (2014) Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution. Appl Surf Sci 317:1052–1059CrossRefGoogle Scholar
  26. Repo E, Mäkinen M, Rengaraj S, Natarajan G, Bhatnagar A, Sillanpää M (2012) Lepidocrocite and its heat-treated forms as effective arsenic adsorbents in aqueous medium. Chem Eng J 180:159–169CrossRefGoogle Scholar
  27. Rezende PS, Costa LM, Windmöller CC (2015) Arsenic mobility in sediments from Paracatu River Basin, MG, Brazil. Arch Environ Contam Toxicol 68(3):588–602CrossRefGoogle Scholar
  28. Rocha TDS, Nascimento ES, Da Silva AC, Oliveira HDS, Garcia EM, De Oliveira LCA, Monteiro DS, Rodriguez M, Pereira MC (2013) Enhanced photocatalytic hydrogen generation from water by Ni(OH)2 loaded on Ni-doped δ-FeOOH nanoparticles obtained by one-step synthesis. RSC Adv 3(43):20308–20314CrossRefGoogle Scholar
  29. Shih YJ, Huang RL, Huang YH (2015) Adsorptive removal of arsenic using a novel akhtenskite coated waste goethite. J Clean Prod 87(1):897–905CrossRefGoogle Scholar
  30. Sun X, Hu C, Hu X, Qu J, Yang M (2013) Characterization and adsorption performance of Zr-doped akaganéite for efficient arsenic removal. J Chem Technol Biotechnol 88(4):629–635CrossRefGoogle Scholar
  31. Tang J, Liu Y, Li H, Tan Z, Li D (2013) A novel Ag3AsO4 visible-light-responsive photocatalyst: facile synthesis and exceptional photocatalytic performance. Chem Commun 49(48):5498–5500CrossRefGoogle Scholar
  32. Tauc J (1974) Amorphous and liquid semiconductors. Plenum, LondonCrossRefGoogle Scholar
  33. Weber WJ, Morris JC (1963) Kinetics of adsorption of carbon from solutions. J Sanit Eng Div 89(2):31–60Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rodrigo C. Hott
    • 1
  • Thaina G. Andrade
    • 1
  • Mayra S. Santos
    • 1
  • Anne C. F. Lima
    • 2
  • Márcia C. S. Faria
    • 1
    • 2
  • Cleide A. Bomfeti
    • 1
  • Fernando Barbosa
    • 2
  • Luiz F. O. Maia
    • 1
  • Luiz C. A. Oliveira
    • 3
  • Márcio C. Pereira
    • 1
  • Jairo L. Rodrigues
    • 1
    Email author
  1. 1.Instituto de Ciência, Engenharia e TecnologiaUniversidade Federal dos Vales do Jequitinhonha e MucuriTeófilo OtoniBrazil
  2. 2.Faculdade de Ciências Farmacêuticas de Ribeirão PretoUniversidade de São PauloRibeirão PretoBrazil
  3. 3.Instituto de Ciências Exatas, Departamento de QuímicaUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations