Skip to main content
Log in

Metal-based optical chemosensors for CN detection

  • Global pollution problems, Trends in Detection and Protection
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This critical review focuses on recent advances (2010–2015) in the detection of cyanide anion via metal-based optical chemosensors in which a change in colour and/or fluorescence intensity (or emission wavelength) of a molecular metal complex is determined by the direct interaction of the metal centre with this anion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43

Similar content being viewed by others

References

  • Aguado Tetilla M, Aragoni MC, Arca M, Caltagirone C, Bazzicalupi C, Bencini A, Garau A, Isaia F, Laguna A, Lippolis V, Meli V (2011) Colorimetric response to anions by a “robust” copper(II) complex of a [9]aneN3 pendant arm derivative: CN- and I-selective sensing. Chem Commun 47:3805–3807. doi:10.1039/C0CC04500D

    Article  Google Scholar 

  • Bhalla V, Singh H, Kumar M (2012) Triphenylene based copper ensemble for the detection of cyanide ions. Dalton Trans 41:11413–11418. doi:10.1039/c2dt31244a

    Article  CAS  Google Scholar 

  • Busschaert N, Caltagirone C, Van Rossom W, Gale PA (2015) Applications of supramolecular anion recognition. Chem Rev 115:8038–8115. doi:10.1021/acs.chemrev.5b00099

    Article  CAS  Google Scholar 

  • Cao W, Zheng X-Y, Fang D-C, Jin L-P (2014) A highly selective and sensitive Zn(II) complex-based chemosensor for sequential recognition of Cu(II) and cyanide. Dalton Trans 43:7298–7303. doi:10.1039/c3dt53647e

  • Chahal MK, Sankar M (2015) Porphyrin chemodosimeters: synthesis, electrochemical redox properties and selective ‘naked-eye’ detection of cyanide ions. RSC Adv 5:99028–99036. doi:10.1039/C5RA19847J

    Article  CAS  Google Scholar 

  • Chen X, Nam S-W, Kim GH, Song N, Jeong Y, Shin I, Kim SK, Park S, Yoon J (2010) A near-infrared fluorescent sensor for detection of cyanide in aqueous solution and its application for bioimaging. Chem Commun 46:8953–8955. doi:10.1039/c0cc03398g

    Article  CAS  Google Scholar 

  • Chen LD, Zou XU, Bühlmann P (2012) Cyanide-selective electrode based on Zn(II) tetraphenylporphyrin as ionophore. Anal Chem 84:9192–9198. doi:10.1021/ac301910c

    CAS  Google Scholar 

  • Chow C-F, Ho P-Y, Wong W-L, Gong C-B (2015) A multifunctional bimetallic molecular device for ultrasensitive detection, naked-eye recognition, and elimination of cyanide ions. Chem Eur J 21:12984–12990. doi:10.1002/chem.201501448

    Article  CAS  Google Scholar 

  • Christison TT, Rohrer JS (2007) Direct determination of free cyanide in drinking water by ion chromatography with pulsed amperometric detection. J Chromatogr A 1155:3139. doi:10.1016/j.chroma.2007.02.083

    Article  Google Scholar 

  • Divya KP, Sreejith S, Balakrishna B, Jayamurthy P, Anees P, Ajayaghosh A (2010) A Zn2+-specific molecular probe for the selective detection of endogenous cyanide in biorelevant samples. Chem Commun 46:6069–6071. doi:10.1039/c0cc01

    Article  CAS  Google Scholar 

  • Even P, Boitrel B (2006) Crown porphyrins. Coord Chem Rev 250:519–541. doi:10.1016/j.ccr.2005.09.003

    Article  CAS  Google Scholar 

  • Gale PA, Caltagirone C (2015) Anion sensing by small molecules and molecular ensembles. Chem Soc Rev 44:4212–4227. doi:10.1039/C4CS00179F

    Article  CAS  Google Scholar 

  • Gee HC, Lee C-H, Jeong Y-H, Jang W-D (2011) Highly sensitive and selective cyanide detection via Cu2+ complex ligand exchange. Chem Commun 47:11963–11965. doi:10.1039/c1cc14963f

    Article  CAS  Google Scholar 

  • Guo Y-Y, Tang X-L, Hou F-P, Wu J, Dou W, Qin WW, Ru JX, Zhang G-L, Liu W-S, Yao X-J (2013) A reversible chemosensor for cyanide in 100 % acqueous solution. Sens & Actuators 181:202–208. doi:10.1016/j.snb.2013.01.053

    Article  CAS  Google Scholar 

  • Hong K-I, Yoon H, Jang W-D (2015) A triazole-bearing picket fence type nickel porphyrin as a cyanide selective allosteric host. Chem Commun 51:7486–7488. doi:10.1039/C5CC00809C

    Article  CAS  Google Scholar 

  • Jian M, Dasgupta Purnendu K (2010) Recent developments in cyanide detection: a review. Anal Chim Acta 673:117–125. doi:10.1016/j.aca.2010.05.042

    Article  Google Scholar 

  • Jung HS, Han JH, Habata Y, Kang C, Kim JS (2011a) An iminocoumarin-Cu(II) ensemble-based chemodosimeter toward thiols. Chem Commun 47:5142–5144. doi:10.1039/c1cc10672d

    Article  CAS  Google Scholar 

  • Jung HS, Han JH, Hwan ZH, Kang C, Kim JS (2011b) Coumarin-Cu(II) ensamble-based cyanide sensing chemodosimeter. Org Lett 13:5056–5059. doi:10.1021/ol2018856

    Article  CAS  Google Scholar 

  • Jung KH, Lee K-H (2015) Efficient ensemble based on the copper binding motif for highly sensitive detection of cyanide ions in 100 % aqueous solutions by fluorescent and colorimetric changes. Anal Chem 87:9308–9314. doi:10.1021/acs.analchem.5b01982

    Article  CAS  Google Scholar 

  • Kaur K, Saini R, Kumar A, Luxami V, Kaur N, Singh P, Kumar S (2012) Chemodosimeters: an approach for detection and estimation of biologically and medically relevant metal ions, anions and thiols. Coord Chem Rev 256:1992–2028. doi:10.1016/j.ccr.2012.04.013

    Article  CAS  Google Scholar 

  • Kulig KW, Ballantyne B (1991) Cyanide toxicity. Volume 15. US Department of Health & Human Services, Public Health Service, Agency for Toxic Substances and Disease Registry, Atlanta

  • Kumar R, Chaudhri N, Sankar M (2015) Ratiometric and colorimetric “naked eye” selective detection of CN ions by electron deficient Ni(II) porphyrins and their reversibility studies. Dalton Trans 43:9149–9157. doi:10.1039/C5DT00937E

    Article  Google Scholar 

  • Lee JH, Jeong AR, Shin I-S, Kim H-J, Hong J-I (2010) Fluorescence turn-on sensor for cyanide based on a cobalt(II)–coumarinylsalen complex. Org Lett 12:764–767

    Article  CAS  Google Scholar 

  • Lee C-H, Yoon H, Jang W-D (2009) Biindole-bridged porphyrin dimer as allosteric molecular tweezers. Chem Eur J 15:9972–9976. doi:10.1002/chem.200901988

    Article  CAS  Google Scholar 

  • Liu Y, Lv X, Zhao Y, Liu J, Sun Y-Q, Wang P, Guo W (2012) A Cu(II)-based chemosensing ensemble bearing rhodamine B fluorophore for fluorescence turn-on detection of cyanide. J Mat Chem 22:1747–1750. doi:10.1039/C1JM15072C

    Article  CAS  Google Scholar 

  • Lou X, Ou D, Li Q, Li Z (2012) An indirect approach for anion detection: the displacement strategy and its application. Chem Commun 48:8462–8577. doi:10.1039/c2cc33158f

    Article  CAS  Google Scholar 

  • Martínez-Máñez R, Sancenón F (2003) Fluorogenic and chromogenic chemosensors and reagents for anions. Chem Rev 103:4419–4476. doi:10.1021/cr010421e

    Article  Google Scholar 

  • Martínez-Máñez R, Sancenón F (2006) Chemodosimeters and 3D inorganic functionalized hosts for the fluoro-chromogenic sensing of anions. Coord Chem Rev 250:3081–3093. doi:10.1016/j.ccr.2006.04.016

    Article  Google Scholar 

  • Miralles E, Prat D, Compañó R, Granados M (1997) Assessment of different fluorimetric reactions for cyanide determination in flow systems. Analyst 122:553–558. doi:10.1039/A608422B

    Article  CAS  Google Scholar 

  • Park GJ, Hwang IH, Song EJ, Kim H, Kim C (2014) A colorimetric and fluorescent sensor for sequential detection of copper ion and cyanide. Tetrahedron 70:2822–2828. doi:10.1016/j.tet.2014.02.055

    Article  CAS  Google Scholar 

  • Polta JA, Johnson DC (1985) Pulsed amperometric detection of electroinactive adsorbates at platinum electrodes in a flow injection system. Anal Chem 57:1373–1376. doi:10.1021/ac00284a043

    Article  CAS  Google Scholar 

  • Randviir EP, Banks CE (2015) The latest developments in quantifying cyanide and hydrogen cyanide. Trends in Analytical Chemistry (2015) 64:75–85. doi:10.1016/j.trac.2014.08.009

    Article  CAS  Google Scholar 

  • Shahid M, Razi SS, Srivastava P, Ali R, Maiti B, Misra A (2012) A useful scaffold based on acenaphtene exhibiting Cu2+ induced excimer fluorescence and sensing cyanide via Cu2+ displacement approach. Tetrahedron 68:9076–9084. doi:10.1016/j.tet.2012.08.052

    Article  CAS  Google Scholar 

  • Shan D, Mousty C, Cosnier S (2004) Subnanomolar cyanide detection at polyphenol oxidase/clay biosensors. Anal Chem 76:178–183. doi:10.1021/ac034713m

    Article  CAS  Google Scholar 

  • Shu Q, Birlenbach L, Schmittel M (2012) A bis(ferrocenyl)phenanthroline iridium(III) complex as a lab-on-a-molecule for cyanide and fluoride in aqueous solution. Inorg Chem 51:13123–13127. doi:10.1021/ic301256g

    Article  CAS  Google Scholar 

  • Sousa MFB, Godinho OES, Aleixo LM (1995) An indirect voltammetric approach for the determination of cyanide at a chemically modified electrode. Electroanalysis 7:1095–1097. doi:10.1002/elan.1140071118

    Article  CAS  Google Scholar 

  • Swamy PCA, Mukherjee S, Pakkirisamy T (2014) Dual binding site assisted chromogenic and fluorogenic recognition and discrimination of fluoride and cyanide by a peripherally borylated metalloporphyrin: overcoming anion interference in organoboron based sensors. Anal Chem 86:3616–3624. doi:10.1021/ac500230p

    Article  CAS  Google Scholar 

  • Takashima I, Kanegae A, Sugimoto M, Ojida A (2014) Aza-crown-ether-appended xanthene: selective ratiometric fluorescent probe for silver(I) ion based on arene-metal ion interaction. Inorg Chem 53:7080–7082. doi:10.1021/ic500980j

    Article  CAS  Google Scholar 

  • Tang L, Wang N, Zhang Q, Guo J, Nandhakumar R (2013) A new benzimidazole-based quinazoline derivative for highly selective sequential recognition of Cu2+ and CN. Tet Lett 54:536–540. doi:10.1016/j.tetlet.2012.11.078

    Article  CAS  Google Scholar 

  • Ullmann’s Encyclopedia of Industrial Chemistry (1999) 6th edn. J Wiley & Sons, New York. doi:10.1002/14356007

  • Upendar RG, Das P, Saha S, Baidya M, Ghosh SK, Das A (2013) A CN specific turn-on phosphorescent probe with probable application for enzymatic assay as an imaging reagent. Chem Commun 49:255–257. doi:10.1039/c2cc37243f

    Article  Google Scholar 

  • Vennesland B, Comm EE, Knownles CJ, Westly J, Wissing F (1981) Cyanide in biology. Academic Press, London

    Google Scholar 

  • Wang F, Wang L, Chen X, Yoon J (2014) Recent progress in the development of fluorimetric and colorimetric chemosensors for detection of cyanide ions. Chem Soc Rev 43:4312. doi:10.1039/c4cs00008k

    Article  CAS  Google Scholar 

  • Wang M, Xu J, Liu X, Wang H (2013) A highly selective pyrene based “off–on” fluorescent chemosensor for cyanide. New J Chem 37:3869–3872. doi:10.1039/C3NJ00800B

    Article  CAS  Google Scholar 

  • Xu Z, Chen X, Kim H, Yoon J (2010a) Sensors for optical detection of cyanide ion. Chem Soc Rev 9:127–137. doi:10.1039/b907368j

    Article  Google Scholar 

  • Xu Z, Oan J, Spring DR, Cui J, Yoon J (2010b) Ratiometric fluorescent and colorimetric sensors for Cu2+ based on 4,5-disubstituted-1,8-naphthalimide and sensing cyanide via Cu2+ displacement approach. Tetrahedron 66:1678–1683. doi:10.1016/j.tet.2010.01.008

    Article  CAS  Google Scholar 

  • You GR, Park GJ, Lee JJ, Kim C (2015) A colorimetric sensor for the sequential detection of Cu2+ and CN in fully aqueous media: practical performance of Cu2+. Dalton Trans 44:9120–9129. doi:10.1039/c5dt00772k

    Article  CAS  Google Scholar 

  • Yoon H, Lee C-H, Jeong Y-H, Gee H-C, Jang WD (2012) A zinc porphyrin-based molecular probe for the determination of contamination in commercial acetonitrile. Chem Commun 48:5109–5111. doi:10.1039/C2CC31149F

    Article  CAS  Google Scholar 

  • Zou Q, Li X, Zhang J, Zhou J, Sun B, Tian H (2012) Unsymmetrical diarylethenes as molecular keypad locks with tunable photochromism and fluorescence via Cu2+ and CN coordinations. Chem Commun 48:2095–2097. doi:10.1021/ol902852g

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrea Bencini or Vito Lippolis.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bencini, A., Lippolis, V. Metal-based optical chemosensors for CN detection. Environ Sci Pollut Res 23, 24451–24475 (2016). https://doi.org/10.1007/s11356-016-7419-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7419-1

Keywords

Navigation