Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 20, pp 20131–20150 | Cite as

Remediation of metalliferous mines, revegetation challenges and emerging prospects in semi-arid and arid conditions

  • Ramkrishna Nirola
  • Mallavarapu Megharaj
  • Simon Beecham
  • Rupak Aryal
  • Palanisami Thavamani
  • Kadiyala Vankateswarlu
  • Christopher Saint
Review Article

Abstract

Understanding plant behaviour in polluted soils is critical for the sustainable remediation of metal-polluted sites including abandoned mines. Post-operational and abandoned metal mines particularly in semi-arid and arid zones are one of the major sources of pollution by soil erosion or plant hyperaccumulation bringing ecological impacts. We have selected from the literature 157 species belonging to 50 families to present a global overview of ‘plants under action’ against heavy metal pollution. Generally, all species of plants that are drought, salt and metal tolerant are candidates of interest to deal with harsh environmental conditions, particularly at semi-arid and arid mine sites. Pioneer metallophytes namely Atriplex nummularia, Atriplex semibaccata, Salsola kali, Phragmites australis and Medicago sativa, representing the taxonomic orders Caryophyllales, Poales and Fabales are evaluated in terms of phytoremediation in this review. Phytoremediation processes, microbial and algal bioremediation, the use and implication of tissue culture and biotechnology are critically examined. Overall, an integration of available remediation plant-based technologies, referred to here as ‘integrated remediation technology,’ is proposed to be one of the possible ways ahead to effectively address problems of toxic heavy metal pollution.

Graphical abstract

Integrated remediation technology (IRT) in metal-contaminated semi-arid and arid conditions. The hexagonal red line represents an IRT concept based on remediation decisions by combination of plants and microbial processes.

Keywords

Heavy metals Metallophytes Plant systematics Revegetation Bioremediation Semi-arid and arid 

References

  1. Alday JG, Marrs RH, Martínez-Ruiz C (2011) Vegetation succession on reclaimed coal wastes in Spain: the influence of soil and environmental factors. Appl Veg Sci 14(1):84–94CrossRefGoogle Scholar
  2. Ali NA, Bernal MP, Ater M (2002) Tolerance and bioaccumulation of copper in Phragmites australis and Zea mays. Plant Soil 239(1):103–111CrossRefGoogle Scholar
  3. Amer N, Chami ZA, Bitar LA, Mondelli D, Dumontet S (2013) Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytoremediation 15(5):498–512CrossRefGoogle Scholar
  4. Archer MJG, Caldwell RA (2004) Response of six Australian plant species to heavy metal contamination at an abandoned mine site. Water Air Soil Pollut 157(1–4):257–267CrossRefGoogle Scholar
  5. Atwell BJ, Kriedemann PE & Turnbull CG (1999) Plants in action: adaptation in nature, performance in cultivation. Macmillan EducationGoogle Scholar
  6. Baker AJM (2014) Metallophytes: a biodiversity and phytotechnological resource for soil decontamination, phytomining and mine site restoration. Acta Biol Cracov Ser Bot Suppl 2(56)Google Scholar
  7. Banuelos G (2006) Multi-faceted considerations for sustainable phytoremediation under field conditions. For Snow Landsc Res 80(2)Google Scholar
  8. Baruah S, Dutta J (2009) Nanotechnology applications in pollution sensing and degradation in agriculture: a review. Environ Chem Lett 7(3):191–204CrossRefGoogle Scholar
  9. Baunthiyal M (2014) Engineering plants for phytoremediation. In: Advances in biotechnology (pp. 227–240). Springer IndiaGoogle Scholar
  10. Black JM (1909) The naturalised flora of South Australia, Adelaide: AustraliaGoogle Scholar
  11. Bothe, H. 2011. Plants in heavy metal soils. In: Detoxification of heavy metals (pp. 35–57). Springer Berlin HeidelbergGoogle Scholar
  12. Boyes LJ, Gunton RM, Griffiths ME, Lawes MJ (2011) Causes of arrested succession in coastal dune forest. Plant Ecol 212(1):21–32CrossRefGoogle Scholar
  13. Bremer K (2002) Gondwanan evolution of the grass alliance of families (Poales). Evolution 56:1374–1387CrossRefGoogle Scholar
  14. Brewin LE, Mehra A, Lynch PT, Farago ME (2003) Mechanisms of copper tolerance by Armeria maritima in Dolfrwynog Bog, North Wales—initial studies. Environ Geochem Health 25(1):147–156CrossRefGoogle Scholar
  15. Browne W, Franks DM & Kendall G (2011) The foundations for responsible mining in Cambodia—suggested approaches. UNDPGoogle Scholar
  16. Brunetti G, Soler-Rovira P, Farrag K, Senesi N (2009) Tolerance and accumulation of heavy metals by wild plant species grown in contaminated soils in Apulia region, Southern Italy. Plant Soil 318(1–2):285–298CrossRefGoogle Scholar
  17. Bullock DM (1936) Atriplex semibaccata as influenced by certain environmental conditions. Ecology 17(2):263–269CrossRefGoogle Scholar
  18. Byrne M, Stone L, Millar MA (2011) Assessing genetic risk in revegetation. J Appl Ecol 48(6):1365–1373CrossRefGoogle Scholar
  19. Cao X (2007) Regulating mine land reclamation in developing countries: the case of China. Land Use Policy 24(2):472–483CrossRefGoogle Scholar
  20. Cano-Aguilera I, Cruz-Jimenez G, De La Rosa G, Sharma NC, Gardea-Torresdey JL, Sahi SV, Duarte-Gardea M, Martinez-Martinez A, Peralta-Videa JR (2007) Role of ethylenediaminetetraacetic acid on lead uptake and translocation by tumbleweed (Salsola kali L.). Environ Toxicol Chem 26(5):1033–1039CrossRefGoogle Scholar
  21. Cetin SC, Karaca A, Kizilkaya R & Turgay OC (2011) Role of plant growth promoting bacteria and fungi in heavy metal detoxification. In: Detoxification of heavy metals (pp. 369–388). Springer Berlin HeidelbergGoogle Scholar
  22. Cetinkaya G, Sozen N (2011) Plant species potentially useful in the phytostabilization process for the abandoned CMC mining site in northern Cyprus. Int J Phytoremediation 13(7):681–691CrossRefGoogle Scholar
  23. Chaney RL, Ryan JA, Li YM, Welch RM, Reeves PG, Brown SL, Green CE (1996) Phyto-availability and bio-availability in risk assessment for cadmium in agricultural environments. Sources of Cadmium in the Environment, pp.49–78Google Scholar
  24. Chaturvedi S, Chandra R, Rai V (2006) Isolation and characterization of Phragmites australis (L.) rhizosphere bacteria from contaminated site for bioremediation of colored distillery effluent. Ecol Eng 27(3):202–207CrossRefGoogle Scholar
  25. Chekol T, Vough LR (2001) A study of the use of alfalfa (Medicago sativa L.) for the phytoremediation of organic contaminants in soil. Remediat J 11(4):89–101CrossRefGoogle Scholar
  26. Chen CR, Xu ZH (2005) Soil carbon and nitrogen pools and microbial properties in a 6-year-old slash pine plantation of subtropical Australia: impacts of harvest residue management. For Ecol Manag 206(1):237–247CrossRefGoogle Scholar
  27. Chiang HC, Lo JC, Yeh KC (2006) Genes associated with heavy metal tolerance and accumulation in Zn/Cd hyperaccumulator Arabidopsis halleri: a genomic survey with cDNA microarray. Environ Sci Technol 40(21):6792–6798CrossRefGoogle Scholar
  28. Claveria R, De los Santos C, Teodoro K, Rellosa M, Vallera N (2010) The identification of metallophytes in the Fe and Cu enriched environments of Brookes Point, Palawan and Mankayan, Benguet and their implications to phytoremediation. Sci Diliman 21(2):1–12Google Scholar
  29. Cousins SR, Witkowski ETF (2012) African aloe ecology: a review. J Arid Environ 85:1–17CrossRefGoogle Scholar
  30. Dahmani-Muller H, Van Oort F, Gelie B, Balabane M (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environ Pollut 109(2):231–238CrossRefGoogle Scholar
  31. Danh LT, Truong P, Mammucari R, Tran T, Foster N (2009) Vetiver grass, Vetiveria zizanioides: a choice plant for phytoremediation of heavy metals and organic wastes. Int J Phytoremediation 11(8):664–691CrossRefGoogle Scholar
  32. de la Rosa G, Peralta-Videa JR, Montes M, Parsons JG, Cano-Aguilera I, Gardea-Torresdey JL (2004) Cadmium uptake and translocation in tumbleweed ( Salsola kali), a potential Cd-hyperaccumulator desert plant species: ICP/OES and XAS studies. Chemosphere 55(9):1159–1168CrossRefGoogle Scholar
  33. de Oliveira JL, Campos EVR, Bakshi M, Abhilash PC, Fraceto LF (2014) Application of nanotechnology for the encapsulation of botanical insecticides for sustainable agriculture: prospects and promises. Biotechnol Adv 32(8):1550–1561CrossRefGoogle Scholar
  34. De Villiers AJ, Van Rooyen MW, Theron GK, Claassens AS (1995) The effect of leaching and irrigation on the growth of Atriplex semibaccata. Land Degrad Dev 6(2):125–131CrossRefGoogle Scholar
  35. de- Bashan LE, Hernandez JP, Bashan Y (2012) The potential contribution of plant growth-promoting bacteria to reduce environmental degradation—a comprehensive evaluation. Appl Soil Ecol 61:171–189CrossRefGoogle Scholar
  36. Di Lonardo S, Capuana M, Arnetoli M, Gabbrielli R, Gonnelli C (2011) Exploring the metal phytoremediation potential of three Populus alba L. clones using an in vitro screening. Environ Sci Pollut Res 18(1):82–90CrossRefGoogle Scholar
  37. Dixit R, Malaviya D, Pandiyan K, Singh UB, Sahu A, Shukla R, Singh BP, Rai JP, Sharma PK, Lade H, Paul D (2015) Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability 7(2):2189–2212CrossRefGoogle Scholar
  38. Dodman D (2009) Blaming cities for climate change? An analysis of urban greenhouse gas emissions inventories. Environ Urban 21(1):185–201CrossRefGoogle Scholar
  39. Doran PM (2009) Application of plant tissue cultures in phytoremediation research: incentives and limitations. Biotechnol Bioeng 103(1):60–76CrossRefGoogle Scholar
  40. Duque JM, Zapico I, Oyarzun R, García JL, Cubas P (2015) A descriptive and quantitative approach regarding erosion and development of landforms on abandoned mine tailings: new insights and environmental implications from SE Spain. Geomorphology 239:1–16CrossRefGoogle Scholar
  41. Ernst, W.H.O 1996, Bioavailability of heavy metals and decontamination of soils by plants. Appl Geochem 11:163–167Google Scholar
  42. Ederli L, Reale L, Ferranti F, Pasqualini S (2004) Responses induced by high concentration of cadmium in Phragmites australis roots. Physiol Plant 121(1):66–74CrossRefGoogle Scholar
  43. Evangelou MW, Robinson BH, Günthardt-Goerg MS, Schulin R (2013) Metal uptake and allocation in trees grown on contaminated land: implications for biomass production. Int J Phytoremediation 15(1):77–90CrossRefGoogle Scholar
  44. Fan S, Li P, Gong Z, Ren W, He N (2008) Promotion of pyrene degradation in rhizosphere of alfalfa (Medicago sativa L.). Chemosphere 71(8):1593–1598CrossRefGoogle Scholar
  45. Fester T, Giebler J, Wick LY, Schlosser D, Kästner M (2014) Plant–microbe interactions as drivers of ecosystem functions relevant for the biodegradation of organic contaminants. Curr Opin Biotechnol 27:168–175CrossRefGoogle Scholar
  46. Fine P (2015) Ecological and evolutionary drivers of geographic variation in species diversity. Annu Rev Ecol Evol Syst 46(1):369–392CrossRefGoogle Scholar
  47. Fior S, Karis PO, Casazza G, Minuto L, Sala F (2006) Molecular phylogeny of the Caryophyllaceae (Caryophyllales) inferred from chloroplast matK and nuclear rDNA ITS sequences. Am J Bot 93(3):399–411CrossRefGoogle Scholar
  48. Förstner U & Wittmann GT (2012) Metal pollution in the aquatic environment. Springer Science & Business MediaGoogle Scholar
  49. Foundation of Ecological Security (FES) (2008) A source book for ecological restorationGoogle Scholar
  50. Fulekar, M. H. (Ed.). 2012. Bioremediation technology: recent advances. SpringerGoogle Scholar
  51. Gaff DF, Churchill DM (1976) Borya nitida Labill.—an Australian species in the Liliaceae with desiccation-tolerant leaves. Aust J Bot 24(2):209–224CrossRefGoogle Scholar
  52. Gamalero E, Lingua G, Berta G, Glick BR (2009) Beneficial role of plant growth promoting bacteria and arbuscular mycorrhizal fungi on plant responses to heavy metal stress. Can J Microbiol 55(5):501–514CrossRefGoogle Scholar
  53. Gardea-Torresdey JL, Peralta-Videa JR, de La Rosa G, Parsons JG (2005) Phytoremediation of heavy metals and study of the metal coordination by X-ray absorption spectroscopy. Coord Chem Rev 249(17):1797–1810CrossRefGoogle Scholar
  54. Gawronski SW, Greger M & Gawronska H (2011) Plant taxonomy and metal phytoremediation. In: Detoxification of heavy metals (pp. 91–109). Springer Berlin HeidelbergGoogle Scholar
  55. González RC, González-Chávez MCA (2006) Metal accumulation in wild plants surrounding mining wastes. Environ Pollut 144(1):84–92CrossRefGoogle Scholar
  56. Groninger J, Skousen J, Angel P, Barton C, Burger J, Zipper C (2007) Mine reclamation practices to enhance forest development through natural succession. The Appalachian Regional Reforestation Initiative. USDI Office of Surface Mining Reclamation and Enforcement, Washington, DCGoogle Scholar
  57. Guo X, Komnitsas K, Li D (2010) Correlation between herbaceous species and environmental variables at the abandoned Haizhou coal mining site. Environ Forensic 11(1–2):146–153CrossRefGoogle Scholar
  58. Guo Z, Megharaj M, Beer M, Ming H, Mahmudur Rahman M, Wu W, Naidu R (2009) Heavy metal impact on bacterial biomass based on DNA analyses and uptake by wild plants in the abandoned copper mine soils. Bioresour Technol 100(17):3831–3836CrossRefGoogle Scholar
  59. Haferburg G, Kothe E (2010) Metallomics: lessons for metalliferous soil remediation. Appl Microbiol Biotechnol 87(4):1271–1280CrossRefGoogle Scholar
  60. Hanikenne M, Nouet C (2011) Metal hyperaccumulation and hypertolerance: a model for plant evolutionary genomics. Curr Opin Plant Biol 14(3):252–259CrossRefGoogle Scholar
  61. Haque AN, Dodman D & Hossain MM (2014) Individual, communal and institutional responses to climate change by low-income households in Khulna, Bangladesh. Environment and Urbanization, 0956247813518681Google Scholar
  62. Hasan S, Sobhian R, Herard F (2001) Biology, impact and preliminary host-specificity testing of the rust fungus, Uromyces salsolae, a potential biological control agent for Salsola kali in the USA. Biocontrol Sci Tech 11(6):677–689CrossRefGoogle Scholar
  63. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60(4):579–598CrossRefGoogle Scholar
  64. Himley M (2014) Mining history: mobilizing the past in struggles over mineral extraction in Peru. Geogr Rev 104(2):174–191CrossRefGoogle Scholar
  65. Hoffmann JH, Impson FAC, Moran VC, Donnelly D (2002) Biological control of invasive golden wattle trees (Acacia pycnantha) by a gall wasp, Trichilogaster sp. (Hymenoptera: Pteromalidae) in South Africa. Biol Control 25(1):64–73CrossRefGoogle Scholar
  66. Hongbo S, Liye C, Gang X, Kun Y, Lihua Z & Junna S (2011) Progress in phytoremediating heavy-metal contaminated soils. In: Detoxification of heavy metals (pp. 73–90). Springer Berlin HeidelbergGoogle Scholar
  67. Hudson N (1987) Soil and water conservation in semi-arid areas (no. 57). Food & Agriculture OrganisationGoogle Scholar
  68. Isayenkov S, Fester T, Hause B (2004) Rapid determination of fungal colonization and arbuscule formation in roots of Medicago truncatula using real-time (RT) PCR. J Plant Physiol 161(12):1379–1383CrossRefGoogle Scholar
  69. Jacobs SW and Wilson KL (2002) Poales: encyclopedia of life sciences. Macmillan Publishers Ltd, Nature Publishing group. Royal Botanic Gardens, Sydney, New South Wales, Australia. http://onlinelibrary.wiley.com/doi/10.1038/npg.els.0003708/pdfGoogle Scholar
  70. Jefferson LV (2004) Implications of plant density on the resulting community structure of mine site land. Restor Ecol 12(3):429–438CrossRefGoogle Scholar
  71. Johansson L, Xydas C, Messios N, Stoltz E, Greger M (2005) Growth and Cu accumulation by plants grown on Cu containing mine tailings in Cyprus. Appl Geochem 20(1):101–107CrossRefGoogle Scholar
  72. Kachout SS, Mansoura AB, Mechergui R, Leclerc JC, Rejeb MN, Ouerghi Z (2012) Accumulation of Cu, Pb, Ni and Zn in the halophyte plant Atriplex grown on polluted soil. J Sci Food Agric 92(2):336–342CrossRefGoogle Scholar
  73. Kadereit G, Borsch T, Weising K, Freitag H (2003) Phylogeny of Amaranthaceae and Chenopodiaceae and the evolution of C4 photosynthesis. Int J Plant Sci 164(6):959–986CrossRefGoogle Scholar
  74. Khan AG, Kuek C, Chaudhry TM, Khoo CS, Hayes WJ (2000) Role of plants, mycorrhizae and phytochelators in heavy metal contaminated land remediation. Chemosphere 41(1):197–207CrossRefGoogle Scholar
  75. Kim CS, Anthony TL, Goldstein D, Rytuba JJ (2014) Windborne transport and surface enrichment of arsenic in semi-arid mining regions: examples from the Mojave Desert, California. Aeolian Res 14:85–96CrossRefGoogle Scholar
  76. Komal T, Mustafa M, Ali Z & Kazi AG (2015) Heavy metal uptake and transport in plants. In: Heavy metal contamination of soils (pp. 181–194). Springer International PublishingGoogle Scholar
  77. Kramer PA, Zabowski D, Scherer G, Everett RL (2000) Native plant restoration of copper mine tailings: II. Field survival, growth, and nutrient uptake. J Environ Qual 29(6):1770–1777CrossRefGoogle Scholar
  78. Krumins JA, Goodey NM, Gallagher F (2015) Plant–soil interactions in metal contaminated soils. Soil Biol Biochem 80:224–231CrossRefGoogle Scholar
  79. Kuppusamy S, Palanisami T, Megharaj M, Venkateswarlu K & Naidu R (2016) Ex-situ remediation technologies for environmental pollutants: a critical perspective. In: Reviews of environmental contamination and toxicology, volume 236 (pp. 117–192). Springer International PublishingGoogle Scholar
  80. Kurek E & Majewska M (2012) Microbially mediated transformations of heavy metals in rhizosphere. In: Toxicity of heavy metals to legumes and bioremediation (pp. 129–146). Springer ViennaGoogle Scholar
  81. Kutsche F & Lay BG (2003) Field guide to the plants of Outback South Australia. Department of Water, Land and Biodiversity ConservationGoogle Scholar
  82. Lal N & Srivastava N (2010) Phytoremediation of toxic explosives. In: Plant adaptation and phytoremediation (pp. 383–397). Springer NetherlandsGoogle Scholar
  83. Lamb DT, Ming H, Megharaj M, Naidu R (2010) Relative tolerance of a range of Australian native plant species and lettuce to copper, zinc, cadmium, and lead. Arch Environ Contam Toxicol 59(3):424–432CrossRefGoogle Scholar
  84. Lamb D, Erskine PD, Fletcher A (2015) Widening gap between expectations and practice in Australian minesite rehabilitation. Ecol Manag Restor 16(3):186–195CrossRefGoogle Scholar
  85. Le Houerou HN (2000) Restoration and rehabilitation of arid and semi-arid Mediterranean ecosystems in North Africa and West Asia: a review. Arid Soil Res Rehabil 14(1):3–14CrossRefGoogle Scholar
  86. Li MS (2006) Ecological restoration of mineland with particular reference to the metalliferous mine wasteland in China: a review of research and practice. Sci Total Environ 357(1):38–53CrossRefGoogle Scholar
  87. Lledó MD, Crespo MB, Fay MF, Chase MW (2005) Molecular phylogenetics of Limonium and related genera (Plumbaginaceae): biogeographical and systematic implications. Am J Bot 92(7):1189–1198CrossRefGoogle Scholar
  88. Lone MI, He ZL, Stoffella PJ, Yang XE (2008) Phytoremediation of heavy metal polluted soils and water: progresses and perspectives. J Zhejiang Univ Sci B 9(3):210–220CrossRefGoogle Scholar
  89. López ML, Peralta-Videa JR, Benitez T, Gardea-Torresdey JL (2005) Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter. Chemosphere 61(4):595–598CrossRefGoogle Scholar
  90. Lottermoser BG (2010) Mine Wastes, characterization, treatment and environmental impacts. Dordrecht, Springer-Verlag Berlin and Heidelberg GmbH & Co. KGGoogle Scholar
  91. Loutseti S, Danielidis DB, Economou-Amilli A, Katsaros C, Santas R, Santas P (2009) The application of a micro-algal/bacterial biofilter for the detoxification of copper and cadmium metal wastes. Bioresour Technol 100(7):2099–2105CrossRefGoogle Scholar
  92. Luo Q, Catney P, Lerner D (2009) Risk-based management of contaminated land in the UK: lessons for China? J Environ Manag 90(2):1123–1134CrossRefGoogle Scholar
  93. Mackasey WOB (2000) Abandoned mines in Canada, Mining Watch Canada, WOM Geological Associates Inc. 140 Crater Crescent Sudbury, Ontario. http://www.miningwatch.ca/sites/www.miningwatch.ca/files/Mackasey_abandoned_mines_0.pdf
  94. Macnair MR & Baker AJ (1994) Metal-tolerant plants: an evolutionary perspective. Plants and the chemical elements—biochemistry, uptake, tolerance and toxicity, 67–85Google Scholar
  95. Maddocks G, Lin C, McConchie D (2009) Field scale remediation of mine wastes at an abandoned gold mine, Australia II: effects on plant growth and groundwater. Environ Geol 57(5):987–996CrossRefGoogle Scholar
  96. Mandal SM & Bhattacharyya R (2012) Rhizobium–legume symbiosis: a model system for the recovery of metal-contaminated agricultural land. In: Toxicity of heavy metals to legumes and bioremediation (pp. 115–127). Springer ViennaGoogle Scholar
  97. Martínez-Fernández D, Walker DJ (2012) The effects of soil amendments on the growth of Atriplex halimus and Bituminaria bituminosa in heavy metal-contaminated soils. Water Air Soil Pollut 223(1):63–72CrossRefGoogle Scholar
  98. McSwane D, French J & Klein R (2015) Environmental health and safety. In: Regulatory foundations for the food protection professional (pp. 125–141). Springer New YorkGoogle Scholar
  99. Megharaj M, Ramakrishnan B, Venkateswarlu K, Sethunathan N, Naidu R (2011) Bioremediation approaches for organic pollutants: a critical perspective. Environ Int 37(8):1362–1375CrossRefGoogle Scholar
  100. Mench M, Bussiere S, Boisson J, Castaing E, Vangronsveld J, Ruttens A, De Koe T, Bleeker P, Assunção A, Manceau A (2003) Progress in remediation and revegetation of the barren Jales gold mine spoil after in situ treatments. Plant Soil 249(1):187–202CrossRefGoogle Scholar
  101. Mendez MO, Maier RM (2008a) Phytoremediation of mine tailings in temperate and arid environments. Rev Environ Sci Biotechnol 7(1):47–59CrossRefGoogle Scholar
  102. Mendez MO, Maier RM (2008b) Phytostabilization of mine tailings in arid and semi-arid environments—an emerging remediation technology. Environ Health Perspect 116(3):278CrossRefGoogle Scholar
  103. Mok HF, Majumder R, Laidlaw WS, Gregory D, Baker AJ, Arndt SK (2013) Native Australian species are effective in extracting multiple heavy metals from biosolids. Int J Phytoremediation 15(7):615–632CrossRefGoogle Scholar
  104. Moreno-Jiménez E, Peñalosa JM, Manzano R, Carpena-Ruiz RO, Gamarra R, Esteban E (2009) Heavy metals distribution in soils surrounding an abandoned mine in NW Madrid (Spain) and their transference to wild flora. J Hazard Mater 162(2):854–859CrossRefGoogle Scholar
  105. Mura S, Seddaiu G, Bacchini F, Roggero PP, Greppi GF (2013) Advances of nanotechnology in agro-environmental studies. Ital J Agron 8(3):18CrossRefGoogle Scholar
  106. Nirola R, Jha PK (2013) Phytodiversity and soil study of Shiwalik hilla of Ilam, Nepal: an ecological perspective. Ecoprint Int J Ecol 18:77–83Google Scholar
  107. Nirola R, Megharaj M, Aryal R, Naidu R (2016) Screening of metal uptake by plant colonizers growing on abandoned copper mine in Kapunda, South Australia. Int J Phytorem 18:399–405Google Scholar
  108. Nirola R, Megharaj M, Palanisami T, Aryal R, Venkateswarlu K (2015) Evaluation of interaction of major native-trees colonizing an abandoned copper mine soil with heavy metals; a quest for phytostabilization. J Sustain Mining 14:114–123Google Scholar
  109. Nouri J, Lorestani B, Yousefi N, Khorasani N, Hasani AH, Seif F, Cheraghi M (2011) Phytoremediation potential of native plants grown in the vicinity of Ahangaran lead–zinc mine (Hamedan, Iran). Environ Earth Sci 62(3):639–644CrossRefGoogle Scholar
  110. Orchard AE, Wilson A (2001) Flora of Australia (vol. 11). CSIRO Google Scholar
  111. Paleg LG, Aspinall D (1981) The physiology and biochemistry of drought resistance in plants. Academic Press, SydneyGoogle Scholar
  112. Pascaud G, Boussen S, Soubrand M, Joussein E, Fondaneche P, Abdeljaouad S, Bril H (2015) Particulate transport and risk assessment of Cd, Pb and Zn in a Wadi contaminated by runoff from mining wastes in a carbonated semi-arid context. J Geochem Explor 152:27–36CrossRefGoogle Scholar
  113. Pathak V, Tripathi BD, Mishra VK (2011) Evaluation of anticipated performance index of some tree species for green belt development to mitigate traffic generated noise. Urban For Urban Green 10(1):61–66CrossRefGoogle Scholar
  114. Perlatti F, Otero XL, Macias F, Ferreira TO (2014) Geochemical speciation and dynamic of copper in tropical semi-arid soils exposed to metal-bearing mine wastes. Sci Total Environ 500:91–102CrossRefGoogle Scholar
  115. Peters TH (1988). Mine tailings reclamation. Inco Limited’s experience with the reclaiming of sulphide tailings in the Sudbury area, Ontario, Canada. In: Environmental management of solid waste (pp. 152–165). Springer Berlin HeidelbergGoogle Scholar
  116. Peters TH (1995) Revegetation of the Copper Cliff tailings area. In: Restoration and recovery of an industrial region (pp. 123–133). Springer New YorkGoogle Scholar
  117. Pilon-Smits E (2005) Phytoremediation. Annu Rev Plant Biol 56:15–39CrossRefGoogle Scholar
  118. Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21(6):539–566CrossRefGoogle Scholar
  119. Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217:8–17CrossRefGoogle Scholar
  120. Prach K, Hobbs RJ (2008) Spontaneous succession versus technical reclamation in the restoration of disturbed sites. Restor Ecol 16(3):363–366CrossRefGoogle Scholar
  121. Prasad MNV, de Oliveira Freitas HM (2003) Metal hyperaccumulation in plants: biodiversity prospecting for phytoremediation technology. Electron J Biotechnol 6(3):285–321CrossRefGoogle Scholar
  122. Pulford ID, Watson C (2003) Phytoremediation of heavy metal-contaminated land by trees—a review. Environ Int 29(4):529–540CrossRefGoogle Scholar
  123. Rajendran P & Gunasekaran P (2007) Nanotechnology for bioremediation of heavy metals. In: Environmental bioremediation technologies (pp. 211–221). Springer Berlin HeidelbergGoogle Scholar
  124. Rajkumar M, Sandhya S, Prasad MNV, Freitas H (2012) Perspectives of plant-associated microbes in heavy metal phytoremediation. Biotechnol Adv 30(6):1562–1574CrossRefGoogle Scholar
  125. Ramakrishnan B, Megharaj M, Venkateswarlu K, Sethunathan N & Naidu R (2011) Mixtures of environmental pollutants: effects on microorganisms and their activities in soils. In: Reviews of environmental contamination and toxicology, Volume 211 (pp. 63–120). Springer New YorkGoogle Scholar
  126. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180(2):169–181CrossRefGoogle Scholar
  127. Rigola D, Fiers M, Vurro E, Aarts MG (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170(4):753–766CrossRefGoogle Scholar
  128. Roy S, Khasa DP, Greer CW (2007) Combining alders, frankiae, and mycorrhizae for the revegetation and remediation of contaminated ecosystems. Botany 85(3):237–251Google Scholar
  129. Rufaut CG, Craw D (2010) Geoecology of ecosystem recovery at an inactive coal mine site, New Zealand. Environ Earth Sci 60(7):1425–1437CrossRefGoogle Scholar
  130. Russell DL (2012) Remediation manual for contaminated sites. Taylor & Francis, CRC Press, Boca Raton, FLGoogle Scholar
  131. Saad L, Parmentier I, Colinet G, Malaisse F, Faucon MP, Meerts P, Mahy G (2012) Investigating the vegetation–soil relationships on the copper–cobalt rock outcrops of Katanga (DR Congo), an essential step in a biodiversity conservation plan. Restor Ecol 20(3):405–415CrossRefGoogle Scholar
  132. Sadik W (2011) Environmental nanotechnology. J Environ Monit 13(5):1131CrossRefGoogle Scholar
  133. Shah K, Nongkynrih JM (2007) Metal hyperaccumulation and bioremediation. Biol Plant 51(4):618–634CrossRefGoogle Scholar
  134. Shekhawat VPS, Kumar A, Neumann KH (2006) Effect of sodium chloride salinity on growth and ion accumulation in some halophytes. Commun Soil Sci Plant Anal 37(13–14):1933–1946CrossRefGoogle Scholar
  135. Shrestha RK, Lal R (2008) Land use impacts on physical properties of 28 years old reclaimed mine soils in Ohio. Plant Soil 306(1–2):249–260CrossRefGoogle Scholar
  136. Sinegani AAS (2007) Temporal and spatial variability of lead levels in Salsola kali near Razan-Hamadan highway. J Appl Sci Environ Manag 11(3):143–146Google Scholar
  137. Singare PU, Bhattacharjee SS, Lokhande RS (2013) Analysis of the heavy metal pollutants in sediment samples collected from Thane Creek of Maharashtra, India. Int J Sustain Soc 5(3):296–308CrossRefGoogle Scholar
  138. Singh A, Prasad SM (2015) Remediation of heavy metal contaminated ecosystem: an overview on technology advancement. Int J Environ Sci Technol 12(1):353–366CrossRefGoogle Scholar
  139. Singh D, Singh B, Goel RK (2011) Traditional uses, phytochemistry and pharmacology of Ficus religiosa: a review. J Ethnopharmacol 134(3):565–583CrossRefGoogle Scholar
  140. Singh SN & Tripathi RD (2007) Environmental bioremediation technologies. SpringerGoogle Scholar
  141. Sinha RK, Herat S, Valani D, Chauhan K (2010) Earthworms—the environmental engineers: review of vermiculture technologies for environmental management and resource development. Int J Glob Environ Issues 10(3):265–292CrossRefGoogle Scholar
  142. Song J, Zhao FJ, Luo YM, McGrath SP, Zhang H (2004) Copper uptake by Elsholtzia splendens and Silene vulgaris and assessment of copper phytoavailability in contaminated soils. Environ Pollut 128(3):307–315CrossRefGoogle Scholar
  143. Smirnova EA, Gusev AA, Zaitseva ON, Lazareva EM, Onishchenko GE, Kuznetsova EV, Tkachev AG, Feofanov AV, Kirpichnikov MP (2011) Multi-walled carbon nanotubes penetrate into plant cells and affect the growth of Onobrychis arenaria seedlings. Acta Nat 3(1):9Google Scholar
  144. Stevens PF (7 May 2006). Angiosperm phylogeny website. Missouri Botanical Garden. Retrieved 2006-11-20. http://www.mobot.org/MOBOT/research/APweb/)
  145. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29(6):896–907CrossRefGoogle Scholar
  146. Tian S, Lu L, Labavitch J, Yang X, He Z, Hu H, Neuville M, Sarangi R, Commisso J, Brown P (2011) Cellular sequestration of cadmium in the hyperaccumulator plant species Sedum alfredii. Plant Physiol 157(4):1914–1925CrossRefGoogle Scholar
  147. Tordoff GM, Baker AJM, Willis AJ (2000) Current approaches to the revegetation and reclamation of metalliferous mine wastes. Chemosphere 41(1):219–228CrossRefGoogle Scholar
  148. Unger CJ, Lechner AM, Kenway J, Glenn V, Walton A (2015) A jurisdictional maturity model for risk management, accountability and continual improvement of abandoned mine remediation programs. Res Policy 43:1–10CrossRefGoogle Scholar
  149. United States Environment Protection Agency (USEPA) (2011) Toxic Release Inventory (TRI) Program, National Analysis Report, http://www.epa.gov/tri/
  150. van de Graaff S, Unger C, Evans RB (2012) Abandoned mines survey, Aus IMM, Centre for Social Responsibility in Mining Sustainable Minerals Institute. The University of Queensland, AustraliaGoogle Scholar
  151. van Zyl D, Sassoon M, Digby C, Fleury AM & Kyeyune SB (2002) Mining for the Future, No 68, Commissioned by the MMSD project of IIEDGoogle Scholar
  152. Vranjic JA, Morin L, Reid AM, Groves RH (2012) Integrating revegetation with management methods to rehabilitate coastal vegetation invaded by Bitou bush (Chrysanthemoides monilifera ssp. rotundata) in Australia. Austral Ecol 37(1):78–89CrossRefGoogle Scholar
  153. Wait M (2012) DMR rehabilitates derelict and ownerless mines, not abandoned sites, Mining weekly, 17 September, viewed 11 Jan 2013, http://www.miningweekly.com/article/dmr-rehabilitates-derelict-and-ownerless-mines-not-abandoned-sites-2012-09-17
  154. Wali MK (1999) Ecological succession and the rehabilitation of disturbed terrestrial ecosystems. Plant Soil 213(1–2):195–220CrossRefGoogle Scholar
  155. Wang FH, Zhao B, Zhang F, Gao J, Hao HT & Zhang S (2015) A novel heavy metal chelating agent sixthio guanidine acid for in situ remediation of soils contaminated with multielements: its synthesis, solidification, biodegradability, and leachability. Journal of Soils and Sediments, 1–11Google Scholar
  156. Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites—a review. J Hazard Mater 221:1–18Google Scholar
  157. Wei S, Zhou Q, Wang X (2005) Identification of weed plants excluding the uptake of heavy metals. Environ Int 31(6):829–834CrossRefGoogle Scholar
  158. Whitbread-Abrutat PH (1997) The potential of some soil amendments to improve tree growth on metalliferous mine wastes. Plant Soil 192(2):199–217CrossRefGoogle Scholar
  159. Whiting SN, Reeves RD, Richards D, Johnson MS, Cooke JA, Malaisse F, Paton A, Smith JAC, Angle JS, Chane RL, Ginocchio R, Jaffre T, Johns R, McIntyre T, Purvis OW, Salt DE, Schat H, Zhao FJ, Baker AJM (2004) Research priorities for conservation of metallophyte biodiversity and their potential for restoration and site remediation. Restor Ecol 12(1):106–116CrossRefGoogle Scholar
  160. Willey N, Fawcett K (2005) Species selection for phytoremediation of 36Cl/ 35Cl using angiosperm phylogeny and inter-taxa differences in uptake. Int J Phytoremediation 7(4):295–306CrossRefGoogle Scholar
  161. Yang XE, Ye HB, Long XX, He B, He ZL, Stoffella PJ, Calvert DV (2005) Uptake and accumulation of cadmium and zinc by Sedum alfredii Hance. at different Cd/Zn supply levels. J Plant Nutr 27(11):1963–1977CrossRefGoogle Scholar
  162. Ye M, Li JT, Tian SN, Hu M, Yi S, Liao B (2009) Biogeochemical studies of metallophytes from four copper-enriched sites along the Yangtze River, China. Environ Geol 56(7):1313–1322CrossRefGoogle Scholar
  163. Zhang J, Gao R, Li M, Cao S & Liu S (2015) Basic characteristics and effective control of Gangue Piles in mining areas: a case study. J Residuals Sci Technol 12Google Scholar
  164. Zhang X, Gao B, Xia H (2014) Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass. Ecotoxicol Environ Saf 106:102–108CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ramkrishna Nirola
    • 1
    • 3
  • Mallavarapu Megharaj
    • 2
  • Simon Beecham
    • 3
  • Rupak Aryal
    • 3
  • Palanisami Thavamani
    • 2
  • Kadiyala Vankateswarlu
    • 4
  • Christopher Saint
    • 3
  1. 1.Future Industries Institute, Division of Information Technology, Engineering and the EnvironmentUniversity of South AustraliaAdelaideAustralia
  2. 2.Global Centre for Environmental Remediation (GCER)University of NewcastleNewcastleAustralia
  3. 3.Natural & Built Environments Research Centre, Division of Information Technology, Engineering and the EnvironmentUniversity of South AustraliaAdelaideAustralia
  4. 4.Faculty of Life SciencesSri Krishnadevaraya UniversityAnantapurIndia

Personalised recommendations