Environmental Science and Pollution Research

, Volume 23, Issue 23, pp 23385–23405 | Cite as

Do morphometric parameters and geological conditions determine chemistry of glacier surface ice? Spatial distribution of contaminants present in the surface ice of Spitsbergen glaciers (European Arctic)

  • Sara Lehmann
  • Grzegorz Gajek
  • Stanisław Chmiel
  • Żaneta PolkowskaEmail author
Research Article


The chemism of the glaciers is strongly determined by long-distance transport of chemical substances and their wet and dry deposition on the glacier surface. This paper concerns spatial distribution of metals, ions, and dissolved organic carbon, as well as the differentiation of physicochemical parameters (pH, electrical conductivity) determined in ice surface samples collected from four Arctic glaciers during the summer season in 2012. The studied glaciers represent three different morphological types: ground based (Blomlibreen and Scottbreen), tidewater which evolved to ground based (Renardbreen), and typical tidewater glacier (Recherchebreen). All of the glaciers are functioning as a glacial system and hence are subject to the same physical processes (melting, freezing) and the process of ice flowing resulting from the cross-impact force of gravity and topographic conditions. According to this hypothesis, the article discusses the correlation between morphometric parameters, changes in mass balance, geological characteristics of the glaciers and the spatial distribution of analytes on the surface of ice. A strong correlation (r = 0.63) is recorded between the aspect of glaciers and values of pH and ions, whereas dissolved organic carbon (DOC) depends on the minimum elevation of glaciers (r = 0.55) and most probably also on the development of the accumulation area. The obtained results suggest that although certain morphometric parameters largely determine the spatial distribution of analytes, also the geology of the bed of glaciers strongly affects the chemism of the surface ice of glaciers in the phase of strong recession.


Svalbard archipelago Surface ice Heavy metals Anthropogenic pollutants Environmental contamination Glaciers 



The authors would like to thank Head of the Department of Analytical Chemistry of the Gdańsk University of Technology Professor Jacek Namieśnik for his support in the laboratory research. The study was conducted in the scope of the 24th Polar Expedition of the Marie Curie-Skłodowska University in Lublin to Spitsbergen, implementing grant of the National Science Centre: principal investigator Dr. Waldemar Kociuba, project title “Mechanisms of fluvial transport and delivery of sediment to the Arctic river channels with different hydrologic regime (SW Spitsbergen)” (No. 2011/01/B/ST10/06996).


  1. ACIA (2005) Arctic climate impact assessment. Cambridge University Press 1042p. 183–242. Accessed 19 July 2014
  2. AMAP (2005). AMAP assessment 2002: heavy metals in the Arctic. Arctic Monitoring and Assessment Programme (AMAP), Oslo. Accessed 21 July 2014
  3. Baranowski S (1977) Subpolar glaciers of Spitsbergen on the background of the region climate. Acta U Wratislaviensis 410:94 in PolishGoogle Scholar
  4. Barrie LA (1986) Arctic air pollution: an overview of current knowledge. Atmos Environ 20:643–663. doi: 10.1016/0004-6981(86)90180-0 CrossRefGoogle Scholar
  5. Bartoszewski S, Gluza A, Siwek K (2006) Selected problems of development of the meteorological and hydrological conditions NW part of Wedel Jarlsberg Land (Spitsbergen). In: XX years of polar research 1986–2005. Institute of Polar Research, UMCS Lublin, pp 53–60. (in Polish)Google Scholar
  6. Bidleman TF, Helm PA, Braune BM, Gabrielsen GW (2010) Polychlorinated naphthalenes in polar environments—a review. Sci Total Environ 408(15):2919–2935. doi: 10.1016/j.scitotenv.2009.09.013 CrossRefGoogle Scholar
  7. Birkenmajer K (1975) Caledonides of Svalbard and plate tectonics. B Geol Soc Denmark 24:1–10Google Scholar
  8. Birkenmajer K (2004) Caledonian basement in NW Wedel Jarlsberg Land south of Bellsund, Spitsbergen. Pol Polar Res 25:3–26Google Scholar
  9. Błaszczyk M, Jania J, Hagen JO (2009) Tidewater glaciers of Svalbard: recent changes and estimates of calving fluxes. Pol Polar Res 30:85–142Google Scholar
  10. Braune BM, Outridge PM, Fisk AT, Muir DCG, Helm PA, Hobbs K, et al. (2005) Persistent organic pollutants and mercury in marine biota of the Canadian Arctic: an overview of spatial and temporal trends. Sci Total Environ 351-352:4–56. doi: 10.1016/j.scitotenv.2004.10.034 CrossRefGoogle Scholar
  11. Chapman PM (2007) Determining when contamination is pollution—weight of evidence determinations for sediments and effluents. Environ Int 33(4):492–501CrossRefGoogle Scholar
  12. Chmiel S, Reszka M, Rysiak A (2009) Heavy metals and radioactivity in environmental samples of the Scott glacier region on Spitsbergen in summer 2005. Quaestiones Geographicae 28 A/1. Adam Mickiewicz University Press, Poznań, pp. 23–29 ISBN 978–83–232-2128-9Google Scholar
  13. Czerny J, Kieres A, Manecki M, Rajchel J (1993) Geological map of the SW part of Wedel Jarlsberg Land, Spitsbergen 1:25 000. Institute of Geology and Mineral Deposits, KrakówGoogle Scholar
  14. Dallmann WK, Hjelle A, Ohta Y, Salvigsen O, Bjørnerud MG, Hauser EC, Maher HD, Craddock C (1990) Geological map of Svalbard 1:100 000, Sheet B 11 G, Van Keulenfjorden. Norsk Polar Institute, OsloGoogle Scholar
  15. De Caritat P, Hall G, Gìslason S, Belsey W, Braun M, Goloubeva NI, et al. (2005) Chemical composition of arctic snow: concentration levels and regional distribution of major elements. The Sci Total Environ 336:183–199. doi: 10.1016/j.scitotenv.2004.05.031 CrossRefGoogle Scholar
  16. Dragon K, Marciniak M (2010) Chemical composition of groundwater and surface water in the Arctic environment (Petuniabukta region, central Spitsbergen). J Hydrol 386(1–4):160–172. doi: 10.1016/j.jhydrol.2010.03.017 CrossRefGoogle Scholar
  17. Evans MS, Muir D, Lockhart WL, Stern G, Ryan M, Roach P (2005) Persistent organic pollutants and metals in the freshwater biota of the Canadian Subarctic and Arctic: an overview. Sci Total Environ 351-352:94–147. doi: 10.1016/j.scitotenv.2005.01.052 CrossRefGoogle Scholar
  18. Ferrari CP, Padova C, Faïn X, Gauchard PA, Dommergue A, Aspmo K, Boutron C (2008) Atmospheric mercury depletion event study in Ny-Alesund (Svalbard) in spring 2005. Deposition and transformation of Hg in surface snow during springtime. Sci Total Environ 397:167–177. doi: 10.1016/j.scitotenv.2008.01.064 CrossRefGoogle Scholar
  19. Fookes PG (2008) Some aspects of the geology of Svalbard. Geol Today 24(4):146–152. doi: 10.1111/j.1365-2451.2008.00677.x CrossRefGoogle Scholar
  20. Gajek G, Grabiec M, Puczko D, Jania J (2008a) Changes of geometry of Renardbreen (Spitsbergen) and evolution of morphology of its forefield during the last century. Workshop on the dynamics and mass budget of Arctic glaciers, 28 January-1 February 2008, Obergurgl, Austria, Institute for Marine and Atmospheric Research Utrecht University, The Netherlands, IASC Working Group on Arctic Glaciology 2008aGoogle Scholar
  21. Gajek G, Harasimiuk M, Jania J, Zagórski P (2008b) Assessment of changes in glacier geometry Renardbreen (Spitsbergen) on the basis of archival materials and GPS measurements. In: Twardosz R, Lake P. (Eds.), Issues of physical geography, Geographical Works 2008; 120: 31–37. Institute of Geography and Regional Development, University of Wrocław (in Polish)Google Scholar
  22. Gajek G, Jania JA, Harasimiuk M, Grabiec M, Puczko D, Zagórski P (2009) Importance of topographic and geologic conditions for behaviour of Spitsbergen glaciers retreating from the sea to land. In: Workshop on the dynamics and mass budget of Arctic glaciers, GLACIODYN (IPY) meeting, 16–19 February 2009, Biogeoscience Institute, University of Calgary, Barrier Lake Station, Kananaskis Country, Alberta, CanadaGoogle Scholar
  23. Gajek G (2007) Changes of the Renardbreen glacier terminus position on the basis of archival records and GPS measurements. Polar Workshop on Changes of the Polar Ecosystem. 8th Meeting of Polar Section of the Czech Geographical Society, Spindlerouv Mlyn, Czech Republic (in press)Google Scholar
  24. Glazovsky AF, YuYa M, Moskalevsky MY, Jania J (1991) Tidewater glaciers of Spitsbergen. Glaciers-Ocean-atmosphere interactions. IAHS Publ 208:229–239Google Scholar
  25. Głowacki P (1998) The cryochemical processes and mass balance of Hans Glacier. In: Abstracts. Polar Aspects of Global Change. International Symposium Tromso, Norway. 24–28 August: S5/7Google Scholar
  26. Głowacki P (2007) The role of physico-chemical processes in shaping the internal structure and the mass circulation of Spitsbergen glaciers. Publications of the Institute of Geophysics, Polish Academy of Science, Warszawa 30 (400): 147Google Scholar
  27. Głowacki P, Leszkiewicz J (1994) Physico-chemical properties of precipitation and snow cover in Spitsbergen in the winter season 1992/1993. In: Zalewski SM (Ed.) XXI Polar Symposium. 60 Years of Polish Research of Spitsbergen, Warszawa, September 23–24, 1994. Institute of Geophysics, Polish Academy of Science, Warszawa, pp 199–205Google Scholar
  28. Grabiec M, Jania J, Clarke G, Piechota A, Budzik T, Kolondra L, Puczko D, Gajek G (2010a) Relation of changes of glacier geometry and thermal structure to drainage system development in Spitsbergen. Second International Symposium on Arctic Research, Tokio 7–9 December 2010, ISAR-2 International Organizing Committee (IOC), JapanGoogle Scholar
  29. Grabiec M, Jania J, Puczko D, Gajek G (2010b) Hydrothermal regime of selected glaciers in S Spitsbergen derived from radio echo-soundings. The AWAKE meeting, Sopot, 4–5 November, PolandGoogle Scholar
  30. Grabiec M, Jania JA, Puczko D, Gajek G (2009) Elements of hydrothermal structure of glaciers from GPR soundings in Spitsbergen, Svalbard. In: Workshop on the dynamics and mass budget of Arctic glaciers, GLACIODYN (IPY) meeting, 16–19 February 2009, Biogeoscience Institute, University of Calgary, Barrier Lake Station, Kananaskis Country, Alberta, CanadaGoogle Scholar
  31. Grabiec M, Puczko D, Budzik T, Gajek G (2011) Snow distribution patterns on Svalbard glaciers derived from radio − echo soundings. Pol Polar Res 32(4):393–421Google Scholar
  32. Hagen J, Liestøl O, Roland E, Jørgensen T (1993) In: Brekke A (ed) Glacier atlas of Svalbard and Jan Mayen, vol 129. Norsk Polar Institute, Oslo, pp. 1–169Google Scholar
  33. Hagen JO, Kohler J, Melvold K, Winther JG (2003) Glaciers in Svalbard: mass balance, runoff and freshwater flux. Polar Res 22:145–159. doi: 10.1111/j.1751-8369.2003.tb00104.x CrossRefGoogle Scholar
  34. Hallanger IG, Ruus A, Warner NA, Herzke D, Evenset A, Schøyen M, et al. (2011) Differences between Arctic and Atlantic fjord systems on bioaccumulation of persistent organic pollutants in zooplankton from Svalbard. Sci Total Environ 409:2783–2795. doi: 10.1016/j.scitotenv.2011.03.015 CrossRefGoogle Scholar
  35. Herbert BMJ, Halsall CJ, Villa S, Jones KC, Kallenborn R (2005) Rapid changes in PCB and OC pesticide concentrations in arctic snow. Envir Sci Tech 39(9):2998–3005. doi: 10.1021/es040076l CrossRefGoogle Scholar
  36. Hodson A, Tranter M, Gurnell A, Clark M, Hagen JO (2002) The hydrochemistry of Bayelva, a high Arctic proglacial stream in Svalbard. J Hydrol 257:91–114. doi: 10.1016/S0022-1694(01)00543-1 CrossRefGoogle Scholar
  37. Hoel A, Werenskiold M (1962) Glaciers and snowfields in Norway. Norsk Polar Institute Skrifter, pp 114.Google Scholar
  38. Hung H, Kallenborn R, Breivik K, Su Y, Brorström-Lundén E, Olafsdottir K, et al. (2010) Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme (AMAP): 1993-2006. Sci Total Environ 408:2854–2873. doi: 10.1016/j.scitotenv.2009.10.044 CrossRefGoogle Scholar
  39. IPCC 2013, Vaughan DG, Comiso JC, Allison I, Carrasco J, Kaser G, Mote P, et al. (2013) Observations: cryosphere. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, et al. (eds) Climate change 2013: the physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  40. Isaksson E, Hermanson M, Hicks S, Igarashi M, Kamiyama K, Moore J, et al. (2003) Ice cores from Svalbard—useful archives of past climate and pollution history. Phys Chem Earth 28:1217–1228. doi: 10.1016/j.pce.2003.08.053 CrossRefGoogle Scholar
  41. Isaksson E, Kekonen T, Moore J, Mulvaney R (2005) The methanesulfonic acid (MSA) record in a Svalbard ice core. Ann Glaciol 42:345–351. doi: 10.3189/172756405781812637 CrossRefGoogle Scholar
  42. Jania J, Błaszczyk M, Grabiec M, Puczko D, Głowacki P, Kolondra L et al (2010) State and recent evolution of glacierization of Southern Spitsbergen. IPY Oslo Science Conference, 8–12 June 2010, WMO, ISCU, SCAR, IASC, IPY, The Research Council of Norway, APECS 2010.Google Scholar
  43. Jania J, Głowacki P, Bukowska-Jania E, Kolondra L, Perski Z, Pulina M et al (2004) The glaciers in the vicinity of Hornsund fiord. In: Glaciological Workshop 2004, Polish Geomorphologists Association, Sosnowiec-Poznań-Longyearbyen 2004, VI-48 – VI-97 (in Polish)Google Scholar
  44. Jania J (1988) Dynamic glacial processes in the southern Spitsbergen in the light of photointerpretative and photogrammetric research. Scientific Papers of the University of Silesia 955:258 in PolishGoogle Scholar
  45. Jania J (1997) Glaciology: science about glaciers. PWN, Warszawa in PolishGoogle Scholar
  46. Koivurova T (2005) Environmental protection in the Arctic and Antarctic: can the polar regimes learn from each other? Intern J Leg Inf 33:203–218Google Scholar
  47. Kowallis BJ, Craddock C (1982) The occurrence of Permian blocks near Calypsobyen, Spitsbergen and their significance. Polar Res 2:105–108CrossRefGoogle Scholar
  48. Kozak K, Polkowska Z, Ruman M, Kozioł K, Namieśnik J (2013) Analytical studies on the environmental state of the Svalbard Archipelago provide a critical source of information about anthropogenic global impact. TrAC- Trend Anal Chem 50:107–126. doi: 10.1016/j.trac.2013.04.016 CrossRefGoogle Scholar
  49. Kwok KY, Yamazaki E, Yamashita N, Taniyasu S, Murphy MB, Horii Y, et al. (2013) Transport of Perfluoroalkyl substances (PFAS) from an arctic glacier to downstream locations: implications for sources. Sci Total Environ 447:46–55. doi: 10.1016/j.scitotenv.2012.10.091 CrossRefGoogle Scholar
  50. Larose C, Dommergue A, De Angelis M, Cossa D, Averty B, Marusczak N, et al. (2010) Springtime changes in snow chemistry lead to new insights into mercury methylation in the Arctic. Geochim et Cosmochim Ac 74:6263–6275. doi: 10.1016/j.gca.2010.08.043 CrossRefGoogle Scholar
  51. Lehmann S, Kociuba W, Franczak Ł, Gajek G, Łęczyński L, Kozak K, et al. (2014) Studies on the presence and spatial distribution of anthropogenic pollutants in the glacial basin of Scott Glacier in the face of climate change (Fiord Bellsund, Spitsbergen). AIP Conf Proc 1618:297–300 . doi: 10.1063/1.4897733ISBN 978-0-7354-1255-2CrossRefGoogle Scholar
  52. Letcher RJ, Bustnes JO, Dietz R, Jenssen BM, Jørgensen EH, Sonne C, et al. (2010) Exposure and effects assessment of persistent organohalogen contaminants in arctic wildlife and fish. Sci Total Environ 408:2995–3043. doi: 10.1016/j.scitotenv.2009.10.038 CrossRefGoogle Scholar
  53. Liestøl O (1969) Glacier surges in West Spitsbergen. Can J Earth Sci 6(4):895–987CrossRefGoogle Scholar
  54. Liestøl O (1993) Glaciers of Europe—glaciers of Svalbard, Norway. In: Williams RS Jr, Ferrigno JG (edit.). Satellite image atlas of glaciers of the world, U.S. Geological Survey Professional Paper 1386-E-5: 127–151.Google Scholar
  55. Lohmann R, Breivik K, Dachs J, Muir D (2007) Global fate of POPs: current and future research directions. Environ Pollut 150:150–156. doi: 10.1016/j.envpol.2007.06.051 CrossRefGoogle Scholar
  56. Macdonald RW, Barrie LA, Bidleman TF, Diamond ML, Gregor DJ, Semkin RG, et al. (2000) Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways. Sci Total Environ 254:93–234. doi: 10.1016/S0048-9697(00)00434-4 CrossRefGoogle Scholar
  57. Macheret YY, Zhuravlev AB (1982) Radio−echo sounding of Svalbard glaciers. J Glaciol 28(99):295–314Google Scholar
  58. Mangerud J, Landvik JY (2007) Younger Dryas cirque glaciers in western Spitsbergen: smaller than during the Little Ice Age. Boreas 36:278–285CrossRefGoogle Scholar
  59. Mędrek K, Gluza A, Siwek K, Zagórski P (2014) Meteorological conditions in the Calypsobyen station during summer season of 2014 on the background of multiannual 1986-2011. Issues of Polar Climatology 24:37–50 in PolishGoogle Scholar
  60. Moore JC, Grinsted A, Kekonen T, Pohjola V (2005) Separation of melting and environmental signals in an ice core with seasonal melt. Geophys Res Lett 32(4):1–4. doi: 10.1029/2005GL023039 Google Scholar
  61. Nuth C, Kohler J, Aas HF, Brandt O, Hagen JO (2007) Glacier geometry and elevation changeson Svalbard (1936-90): a baseline dataset. Ann Glaciol 46:1–11CrossRefGoogle Scholar
  62. Nuth C, Moholdt G, Kohler J, Hagen JO, Kääb A (2010) Svalbard glacier elevation changes and contribution to sea level rise. J Geophys Res 115Google Scholar
  63. Post A (1969) Distribution of surging glaciers in western North America. J Glaciol 8(53):229–240Google Scholar
  64. Pulina M (1991) Stratification and physico-chemical properties of snow in Spitsbergen in the hydro-glaciological year 1989/1990. Geographical expedition to Spitsbergen, Materials of Polar Session: Arctic Environment Research UMCS, Lublin, pp 191–213 (in Polish)Google Scholar
  65. Reder J, Zagórski P (2007) Recession and development of marginal zone of the Renard Glacier. Landform Analysis 5:163–167Google Scholar
  66. Rigét F, Bignert A, Braune B, Stow J, Wilson S (2010) Temporal trends of legacy POPs in Arctic biota, an update. Sci Total Environ 408(15):2874–2884. doi: 10.1016/j.scitotenv.2009.07.036 CrossRefGoogle Scholar
  67. Ruggirello RM, Hermanson MH, Isaksson E, Teixeira C, Forsström S, Muir DCG, et al. (2010) Current use and legacy pesticide deposition to ice caps on Svalbard, Norway. J Geophys Res Atmos 115:D 18308. doi: 10.1029/2010JD014005 CrossRefGoogle Scholar
  68. Ruman M, Kozak K, Lehmann S, Kozioł K, Polkowska Ż (2012) Pollutants present in different components of the Svalbard archipelago environment. Ecol Chem Eng S 19(4):571–584. doi: 10.2478/v10216-011-0040-9 Google Scholar
  69. Sharp MJ (1988) Surging glaciers: geomorphic effects. Prog Phys Geogr 12:533–559CrossRefGoogle Scholar
  70. Stohl A (2006) Characteristics of atmospheric transport into the Arctic troposphere. J Geophys Res Atmos 111(11):D11306. doi: 10.1029/2005JD006888 CrossRefGoogle Scholar
  71. Wadham JL, Hodson AJ, Tranter M, Dowdeswell JA (1998) The hydrochemistry of meltwaters draining a polythermal-based, high Arctic glacier, south Svalbard: I. The ablation season. Hydrol Process 12:1825–1849. doi: 10.1002/(SICI)1099-1085(19981015)12:12<1825::AID-HYP669>3.0.CO;2-R CrossRefGoogle Scholar
  72. Watanabe O, Motoyamal H, Igarashi M, Kamiyama K, Matoba S, Goto-Azumal K, et al. (2001) Studies on climatic and environmental changes during the last few hundred years using ice cores from various sites in Nordaustlandet, Svalbard. Mem. Natl. Inst. Polar Res 54:227–242Google Scholar
  73. Weber J, Halsall CJ, Muir D, Teixeira C, Small J, Solomon K, et al. (2010) Endosulfan, a global pesticide: a review of its fate in the environment and occurrence in the Arctic. Sci Total Environ 408(15):2966–2984. doi: 10.1016/j.scitotenv.2009.10.077 CrossRefGoogle Scholar
  74. Zagórski P, Bartoszewski S (2004) Attempt to assess the recession of the glacier Scott based on archival material and GPS measurements. Pol Polar Stud, XXX International Polar Symposium, Gdynia, pp 415–424 (in Polish)Google Scholar
  75. Zagórski P, Siwek K, Gluza A (2008a) Altering reach of the forehead and the geometry of the glacier Renard (Spitsbergen) on the background of the twentieth century climate change. Polar Climatology Problems 18:113–125 in PolishGoogle Scholar
  76. Zagórski P, Siwek K, Gluza A, Bartoszewski S (2008b) Changes in the extent and geometry of the Scott Glacier, Spitsbergen. Pol Polar Res 29(2):163–185Google Scholar
  77. Zagórski P, Gajek G, Demczuk P (2012) The influence of glacier systems of polar catchments on functioning of the coastal zone (Recherchefjorden, Svalbard). Z Geomorphol 56(l):101–122CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Sara Lehmann
    • 1
  • Grzegorz Gajek
    • 2
  • Stanisław Chmiel
    • 3
  • Żaneta Polkowska
    • 1
    Email author
  1. 1.Department of Analytical Chemistry, Faculty of ChemistryGdansk University of TechnologyGdanskPoland
  2. 2.Department of Geology and Lithosphere Protection, Faculty of Earth Sciences and Spatial ManagementMaria Curie-Skłodowska University in LublinLublinPoland
  3. 3.Department of Hydrology, Faculty of Earth Sciences and Spatial ManagementMaria Curie-Skłodowska University in LublinLublinPoland

Personalised recommendations