Environmental Science and Pollution Research

, Volume 23, Issue 21, pp 21619–21630

Sorption of zinc onto elemental selenium nanoparticles immobilized in Phanerochaete chrysosporium pellets

  • Erika J. Espinosa-Ortiz
  • Manisha Shakya
  • Rohan Jain
  • Eldon R. Rene
  • Eric D. van Hullebusch
  • Piet N. L. Lens
Research Article


The use of a novel hybrid biosorbent, elemental selenium nanoparticles (nSe0) immobilized in pellets of Phanerochaete chrysosporium, to remove Zn from aqueous solutions was investigated. Fungal pellets containing nSe0 (nSe0-pellets) showed to be better biosorbents as they removed more Zn (88.1 ± 5.3 %) compared to Se-free fungal pellets (56.2 ± 2.8 %) at pH 4.5 and an initial Zn concentration of 10 mg L−1. The enhanced sorption capacity of nSe0-pellets was attributed to a higher concentration of sorption sites resulting in a more negative surface charge density, as determined by analysis of the potentiometric titration data. Fourier transform infrared spectroscopy (FT-IR) analysis of fungal pellets prior to and after being loaded with Zn showed the functional groups, including hydroxyl and carboxyl groups, involved in the sorption process. The experimental data indicated that the sorption rate of the nSe0-pellets fitted well to the pseudo-second order kinetic model (R2 = 0.99), and the sorption isotherm was best represented by the Sips model (Langmuir-Freundlich) with heterogeneous factor n = 1 (R2 = 0.99), which is equivalent to the Langmuir model. Operational advantages of fungal pelleted reactors and the Zn removal efficiencies achieved by nSe0-pellets under mild acidic conditions make nSe0-pellet based bioreactors an efficient biosorption process.


Zinc biosorption Fungal pellets Selenium nanoparticles Phanerochaete chrysosporium Hybrid biosorbent 

Supplementary material

11356_2016_7333_MOESM1_ESM.docx (197 kb)
ESM 1(DOCX 196 kb)


  1. Ahmad MF, Haydar S, Quraishi TA (2013) Enhancement of biosroption of zinc ions from aqueous solution by immobilized Candida utilis and Candida tropicalis cells. Int Biodeter Biodegr 83:119–128. doi:10.1016/j.ibiod.2013.04.016 CrossRefGoogle Scholar
  2. Akar T, Tunali S, Cabuk A (2007) Study on the characterization of lead (II) biosorption by fungus Aspergillus parasiticus. Appl Biochem Biotechnol 136:389–405. doi:10.1007/s12010-007-9032-8 CrossRefGoogle Scholar
  3. Arıca MY, Arpa C, Ergene A, Bayramoğlu G, Genç Ö (2003) Ca-alginate as a support for Pb (II) and Zn (II) biosorption with immobilized Phanerochaete chrysosporium. Carbohydr Polym 52:167–174. doi:10.1016/S0144-8617(02)00307-7 CrossRefGoogle Scholar
  4. Arica MY, Bayramoğlua G (2007) Biosorption of reactive red-120 dye from aqueous solution by native and modified fungus biomass preparations of Lentinus sajor-caju. J Hazard Mater 149:499–507. doi:10.1016/j.jhazmat.2007.04.021 CrossRefGoogle Scholar
  5. Bai RS, Abraham TE (2002) Studies on enhancement of Cr (VI) biosorption by chemically modified biomass of Rhizopus nigricans. Water Res 36:1224–1236. doi:10.1016/S0043-1354(01)00330-X CrossRefGoogle Scholar
  6. Bayramoğlu G, Arıca MY (2008) Removal of heavy mercury(II), cadmium(II) and zinc(II) metal ions by live and heat inactivated Lentinus edodes pellets. Chem Eng J 143:133–140. doi:10.1016/j.cej.2008.01.002 CrossRefGoogle Scholar
  7. Bayramoǧlu G, Bektaş S, Arica MY (2003) Biosorption of heavy metal ions on immobilized white-rot fungus Trametes versicolor. J Hazard Mater 101:285–300. doi:10.1016/S0304-3894(03)00178-X CrossRefGoogle Scholar
  8. Bolster CH, Hornberger GM (2007) On the use of linearized Langmuir equations. Nutr Manag Soil Plant Anal 71:1796–1806. doi:10.2136/sssaj2006.0304 Google Scholar
  9. Braissant O, Decho AW, Dupraz C, Glunk C, Przekop KM, Visscher PT (2007) Exopolymeric substances of sulfate-reducing bacteria: interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology 5:401–411. doi:10.1111/j.1472-4669.2007.00117.x CrossRefGoogle Scholar
  10. Chen XC, Wang YP, Lin Q, Shi JY, Chen YX (2005) Biosorption of copper(II) and zinc(II) from aqueous solution by Pseudomonas putida CZ1. Colloids Surf B: Biointerfaces 46:101–107. doi:10.1016/j.colsurfb.2005.10.003 CrossRefGoogle Scholar
  11. Deng S, Ting YP (2005) Characterization of PEI-modified biomass and biosorption of Cu(II), Pb(II) and Ni(II). Water Res 39:2167–2177. doi:10.1016/j.watres.2005.03.033 CrossRefGoogle Scholar
  12. Dong XQ, Yang JS, Zhu N, Wang ET, Yuan HL (2013) Sugarcane bagasse degradation and characterization of three white-rot fungi. Bioresour Technol 131:443–451. doi:10.1016/j.biortech.2012.12.182 CrossRefGoogle Scholar
  13. Espinosa-Ortiz EJ, Gonzalez-Gil G, Saikaly PE, van Hullebusch ED, Lens PNL (2015a) Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Appl Microbiol Biotechnol 99:2405–2418. doi:10.1007/s00253-014-6127-3 CrossRefGoogle Scholar
  14. Espinosa-Ortiz EJ, Rene ER, van Hullebusch ED, Lens PNL (2015b) Removal of selenite from wastewater in a Phanerochaete chrysosporium pellet based fungal bioreactor. Int Biodeter Biodegr 102:361–369. doi:10.1016/j.ibiod.2015.04.014 CrossRefGoogle Scholar
  15. Espinosa-Ortiz EJ, Pechaud Y, Lauchnor E, Rene ER, Gerlach R, Peyton BM, van Hullebusch ED, Lens PNL (2016) Effect of selenite on the morphology and respiratory activity of Phanerochaete chrysosporium biofilms. Bioresour Technol 210:138–145. doi:10.1016/j.biortech.2016.02.074 CrossRefGoogle Scholar
  16. Filipović-Kovačević Z, Sipos L, Briški F (2010) Biosorption of chromium, copper, nickel, and zinc ions onto fungal pellets of Aspergillus niger 405 from aqueous solutions. Food Technol Biotechnol 38:211–216Google Scholar
  17. Fomina M, Gadd GM (2014) Biosorption: current perspectives on concept, definition and application. Bioresour Technol 160:3–14. doi:10.1016/j.biortech.2013.12.102 CrossRefGoogle Scholar
  18. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. doi:10.1016/j.cej.2009.09.013 CrossRefGoogle Scholar
  19. Ge F, Li MM, Ye H, Zhao BX (2012) Effective removal of heavy metal ions Cd2+, Zn2+, Pb2+, Cu2+ from aqueous solution by polymer-modified magnetic nanoparticles. J Hazard Mater 211–212:366–372. doi:10.1016/j.jhazmat.2011.12.013 CrossRefGoogle Scholar
  20. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 35:451–465. doi:10.1016/S0032-9592(98)00112-5 CrossRefGoogle Scholar
  21. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mat 211-212:317–331. doi:10.1016/j.jhazmat.2011.10.016 CrossRefGoogle Scholar
  22. Jain R, Jordan N, Schild D, van Hullebusch ED, Weiss S, Franzen C, Farges F, Hübner R, Lens PNL (2015a) Adsorption of zinc by biogenic elemental selenium nanoparticles. Chem Eng J 260:855–863. doi:10.1016/j.cej.2014.09.057 CrossRefGoogle Scholar
  23. Jain R, Seder-Colomina M, Jordan N, Dessi P, Cosmidis J, van Hullebusch ED, Weiss S, Farges F, Lens PNL (2015b) Entrapped elemental selenium nanoparticles affect physicochemical properties of selenium fed activated sludge. J Hazard Mater 295:193–200. doi:10.1016/j.jhazmat.2015.03.043 CrossRefGoogle Scholar
  24. Jain R, Dominic D, Jordan N, Rene ER, Weiss S, van Hullebusch ED, Hübner R, Lens PNL (2016) Preferential adsorption of Cu in a multi-metal mixture onto biogenic elemental selenium nanoparticles. Chem Eng J 284:917–925. doi:10.1016/j.cej.2015.08.144 CrossRefGoogle Scholar
  25. Javaid A, Bajwa R, Shafique U, Anwar J (2011) Removal of heavy metals by adsorption on Pleurotus ostreatus. Biomass Bioenerg 35:1675–1682. doi:10.1016/j.biombioe.2010.12.035 CrossRefGoogle Scholar
  26. Kaçara Y, Arpab Ç, Tana S, Denizlib A, Gençb Ö, Arıca MY (2002) Biosorption of Hg(II) and Cd(II) from aqueous solutions: comparison of biosorptive capacity of alginate and immobilized live and heat inactivated Phanerochaete chrysosporium. Proc Biochem 37:601–610. doi:10.1016/S0032-9592(01)00248-5
  27. Kogej A, Pavko A (2001) Laboratory experiments of lead biosorption by self-immobilized Rhizopus nigricans pellets in the batch stirred tank reactor and the packed bed column. Chem Biochem Eng Q 15:75–79Google Scholar
  28. Kumar NS, Min K (2011) Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modeling. Chem Eng J 168:562–571. doi:10.1016/j.cej.2011.01.023 CrossRefGoogle Scholar
  29. Kumar KY, Muralidhara HB, Nayaka YA, Balasubramanyam J, Hanumanthappa H (2013) Low-cost synthesis of metal oxide nanoparticles and their application in adsorption of commercial dye and heavy metal ion in aqueous solution. Powder Technol 246:125–136. doi:10.1016/j.powtec.2013.05.017 CrossRefGoogle Scholar
  30. Kumar YP, King P, Prasad VSRK (2006) Comparison for adsorption modelling of copper and zinc from aqueous solution by Ulva fasciata sp. J Hazard Mater 137:1246–1251. doi:10.1016/j.jhazmat.2006.04.018 CrossRefGoogle Scholar
  31. Laurent J, Casellas M, Dagot C (2009) Heavy metals uptake by sonicated activated sludge: relation with floc surface properties. J Hazard Mater 162:652–660. doi:10.1016/j.jhazmat.2008.05.066 CrossRefGoogle Scholar
  32. Lecellier A, Mounier J, Gaydou V, Castrec L, Barbier G, Ablain W, Manfait M, Toubas D, Sockalingum GD (2014) Differentiation and identification of filamentous fungi by high-throughput FTIR spectroscopic analysis of mycelia. Int J Food Microbiol 168–169:32–41. doi:10.1016/j.ijfoodmicro.2013.10.011 CrossRefGoogle Scholar
  33. Lin J, Wang L (2009) Comparison between linear and non-linear forms of pseudo-first-order and pseudo-second-order adsorption kinetic models for the removal of methylene blue by activated carbon. Front Environ Sci Eng China 3:320–324. doi:10.1007/s11783-009-0030-7 CrossRefGoogle Scholar
  34. Luo HW, Chen JJ, Sheng GP, Su JH, Wei SQ, Yu HQ (2014) Experimental and theoretical approaches for the surface interaction between copper and activated sludge microorganisms at molecular scale. Sci Rep 4:7078. doi:10.1038/srep07078 CrossRefGoogle Scholar
  35. Mansoorian HJ, Mahvi AH, Jafari AJ (2014) Removal of lead and zinc from battery industry wastewater using electrocoagulation process: influence of direct and alternating current by using iron and stainless steel rod electrodes. Sep Purif Technol 135:165–175. doi:10.1016/j.seppur.2014.08.012 CrossRefGoogle Scholar
  36. Marandi R, Ardejani FD, Afshar HA (2010) Biosorption of lead (II) and zinc (II) ions by pre-treated biomass of Phanerochaete chrysosporium. Int J Mining Environ 1:8–16. doi:10.1080/13102818.2015.1036775 Google Scholar
  37. Mohan D, Singh KP (2002) Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse—an agricultural waste. Water Res Volume 36:2304–2318. doi:10.1016/S0043-1354(01)00447-X
  38. Naeem A, Woertz JR, Fein JB (2006) Experimental measurement of proton, Cd, Pb, Sr and Zn adsorption onto the fungal species Saccharomyces cerevisiae. Environ Sci Technol 40:5724–5729. doi:10.1021/es0606935 CrossRefGoogle Scholar
  39. Naja G, Mustin C, Volesky B, Berthelin J (2005) A high-resolution titrator: a new approach to studying binding sites of microbial biosorbents. Water Res 39:579–588. doi:10.1016/j.watres.2004.11.008 CrossRefGoogle Scholar
  40. Ngwenya N, Whiteley CG (2006) Recovery of rhodium (III) from solutions and industrial wastewaters by a sulfate-reducing bacteria consortium. Biotechnol Prog 22:1604–1611. doi:10.1002/bp060167h CrossRefGoogle Scholar
  41. Pagnanelli F, Esposito A, Toro L, Vegliò F (2003) Metal speciation and pH effect on Pb, Cu, Zn and Cd biosorption onto Sphaerotilus natans: Langmuir-type empirical model. Water Res 37:627–633. doi:10.1016/S0043-1354(02)00358-5 CrossRefGoogle Scholar
  42. Park D, Yun YS, Park JM (2010) The past, present, and future trends of biosorption. Biotechnol Bioprocess Eng 15:86–102. doi:10.1007/s12257-009-0199-4 CrossRefGoogle Scholar
  43. Parvathi K, Nagendran R, Nareshkumar R (2007) Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electron J Biotechnol 10(1). doi:10.2225/vol10-issue1-fulltext-13
  44. Tobin JM, White C, Gadd GM (1994) Metal accumulation by fungi: application in environmental biotechnology. J Ind Microbiol 13:126–130. doi:10.1007/BF01584110 CrossRefGoogle Scholar
  45. Turner BF, Fein JB (2006) Protofit: a program for determining surface protonation constants from titration data. Comput Geosciences 32:1344–1356. doi:10.1016/j.cageo.2005.12.005 CrossRefGoogle Scholar
  46. Tourney J, Ngwenya BT (2014) The role of bacterial extracellular polymeric substances in geomicrobiology. Chem Geol 386:115–132. doi:10.1016/j.chemgeo.2014.08.011 CrossRefGoogle Scholar
  47. Valix MR, Tang M, Malik R (2001) Heavy metal tolerance of fungi. Miner Eng 14:499–505. doi:10.1016/j.scient.2011.05.015 CrossRefGoogle Scholar
  48. Worch E (2012) Adsorption technology in water treatment. Fundamentals, processes and modeling. Walter de Gruyter GmbH & Co. KG, Berlin/BostonGoogle Scholar
  49. World Health Organization (2008) Guidelines for Drinking-Water Quality (3rd ed). GenevaGoogle Scholar
  50. Xu J, Zhang H, Zhang J, Kim EJ (2014) Capture of toxic radioactive and heavy metal ions from water by using titanate nanofibers. J Alloys Compd 614:389–393. doi:10.1016/j.jallcom.2014.06.128 CrossRefGoogle Scholar
  51. Xu P, Zeng GM, Huang DL, Lai C, Zhao MH, Wei Z, Li NJ, Huang C, Xie GX (2012) Adsorption of Pb(II) by iron oxide nanoparticles immobilized Phanerochaete chrysosporium: equilibrium, kinetic, thermodynamic and mechanisms analysis. Chem Eng J 203:423–431. doi:10.1016/j.cej.2012.07.048 CrossRefGoogle Scholar
  52. Xu CL, Wang YZ, Jin ML, Yang XQ (2009) Preparation, characterization and immunomodulatory activity of selenium-enriched exopolysaccharide produced by bacterium Enterobacter cloacae Z0206. Bioresour Technol 100:2095–2097. doi:10.1016/j.biortech.2008.10.037 CrossRefGoogle Scholar
  53. Zaidi A, Oves M, Ahmad E, Khan MS (2011) Importance of free-living fungi in heavy metal remediation. In: M.S. Khan, A. Zaidi, R. Goel, J. Musarrat (Eds.), Biomanagement of metal-contaminated soils, Environmental Pollution 20, Springer, p 479–495Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Erika J. Espinosa-Ortiz
    • 1
  • Manisha Shakya
    • 1
  • Rohan Jain
    • 1
    • 2
  • Eldon R. Rene
    • 1
  • Eric D. van Hullebusch
    • 3
  • Piet N. L. Lens
    • 1
    • 2
  1. 1.Department of Environmental Engineering and Water TechnologyUNESCO-IHE Institute for Water EducationDelftThe Netherlands
  2. 2.Department of Chemistry and BioengineeringTampere University of TechnologyTampereFinland
  3. 3.Laboratoire Géomatériaux et Environnement (EA 4508), UPEMUniversité Paris-EstMarne-la-ValléeFrance

Personalised recommendations