Environmental Science and Pollution Research

, Volume 23, Issue 24, pp 24476–24494 | Cite as

Analytical tools employed to determine pharmaceutical compounds in wastewaters after application of advanced oxidation processes

  • Cristina Afonso-Olivares
  • Sarah Montesdeoca-Esponda
  • Zoraida Sosa-Ferrera
  • José Juan Santana-Rodríguez
Global pollution problems, Trends in Detection and Protection


Today, the presence of contaminants in the environment is a topic of interest for society in general and for the scientific community in particular. A very large amount of different chemical substances reaches the environment after passing through wastewater treatment plants without being eliminated. This is due to the inefficiency of conventional removal processes and the lack of government regulations. The list of compounds entering treatment plants is gradually becoming longer and more varied because most of these compounds come from pharmaceuticals, hormones or personal care products, which are increasingly used by modern society. As a result of this increase in compound variety, to address these emerging pollutants, the development of new and more efficient removal technologies is needed. Different advanced oxidation processes (AOPs), especially photochemical AOPs, have been proposed as supplements to traditional treatments for the elimination of pollutants, showing significant advantages over the use of conventional methods alone. This work aims to review the analytical methodologies employed for the analysis of pharmaceutical compounds from wastewater in studies in which advanced oxidation processes are applied. Due to the low concentrations of these substances in wastewater, mass spectrometry detectors are usually chosen to meet the low detection limits and identification power required. Specifically, time-of-flight detectors are required to analyse the by-products.


Advanced oxidation processes Pharmaceutical compounds Wastewater Sample preparation Determination methods 



Activated carbon


Advanced oxidation processes


Atmospheric pressure ionisation


Carbon nanofiber






Electrochemical AOPs


Endocrine disruptor compounds




Electrospray ionisation


Gas chromatography


Head space


Liquid chromatography


Liquid-liquid extraction


Limit of detection


Limit of quantification


Mass spectrometry




Non-steroidal anti-inflammatory drugs


Diode array detector


Persistent organic pollutants


Pharmaceutical and personal care products


Stir-bar sorptive extraction


Solid-phase extraction


Thermally activated persulfate




Ultra-high performance LC








Wastewater treatment plants



This work was supported by funds provided by the Spanish Ministry of Economy and Competitiveness, Research Project CTM2015-66095-C2-1-R. Cristina Afonso-Olivares would like to thank the FPU Grant Program of the Spanish Ministry of Education, Culture and Sport for its support.


  1. Abdelmelek SB, Greaves J, Ishida KP, et al. (2011) Removal of pharmaceutical and personal care products from reverse osmosis Retentate using advanced oxidation processes. Environ Sci Technol 45:3665–3671. doi: 10.1021/es104287n CrossRefGoogle Scholar
  2. Aguinaco A, Beltrán FJ, García-Araya JF, Oropesa A (2012) Photocatalytic ozonation to remove the pharmaceutical diclofenac from water: influence of variables. Chem Eng J 189–190:275–282. doi: 10.1016/j.cej.2012.02.072 CrossRefGoogle Scholar
  3. Ajobo JA, Abioye AO (2014) A methodology for proper waste disposal, treatment, and management enhancing sustainable development in the third world. Pac J Sci Technol 15:318–326Google Scholar
  4. Álvarez PM, Beltrán FJ, Jaramillo J, et al. (2011) Comparison of various advanced treatment methods for municipal wastewater reclamation. World Acad Sci Eng Technol 79:653–654Google Scholar
  5. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 2014:1–24. doi: 10.1155/2014/825910 CrossRefGoogle Scholar
  6. An T, Yang H, Song W, et al. (2010) Mechanistic considerations for the advanced oxidation treatment of fluoroquinolone pharmaceutical compounds using TiO2 heterogeneous catalysis. J Phys Chem A 114:2569–2575. doi: 10.1021/jp911349y CrossRefGoogle Scholar
  7. Babuponnusami A, Muthukumar K (2014) A review on Fenton and improvements to the Fenton process for wastewater treatment. J Environ Chem Eng 2:557–572. doi: 10.1016/j.jece.2013.10.011 CrossRefGoogle Scholar
  8. Badawy MI, Souaya EMR, Gad-Allah TA, et al. (2014) Fabrication of Ag/TiO2 photocatalyst for the treatment of simulated hospital wastewater under sunlight. Environ Prog Sustain Energy 33:886–894. doi: 10.1002/ep.11869 CrossRefGoogle Scholar
  9. Baeza C, Knappe DRU (2011) Transformation kinetics of biochemically active compounds in low-pressure UV photolysis and UV/H2O2 advanced oxidation processes. Water Res 45:4531–4543. doi: 10.1016/j.watres.2011.05.039 CrossRefGoogle Scholar
  10. Barbosa MO, Moreira NFF, Ribeiro AR, et al. (2016) Occurrence and removal of organic micropollutants: an overview of the watch list of EU decision 2015/495. Water Res 94:257–279. doi: 10.1016/j.watres.2016.02.047 CrossRefGoogle Scholar
  11. Batista APS, Pires FCC, Teixeira ACSC (2014) The role of reactive oxygen species in sulfamethazine degradation using UV-based technologies and products identification. J Photochem Photobiol Chem 290:77–85. doi: 10.1016/j.jphotochem.2014.06.006 CrossRefGoogle Scholar
  12. Beltrán FJ, Aguinaco A, García-Araya JF (2012) Application of ozone involving advanced oxidation processes to remove some pharmaceutical compounds from urban wastewaters. Ozone Sci Eng 34:3–15. doi: 10.1080/01919512.2012.640154 CrossRefGoogle Scholar
  13. Bolong N, Ismail AF, Salim MR, Matsuura T (2009) A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 238:229–246. doi: 10.1016/j.desal.2008.03.020 CrossRefGoogle Scholar
  14. Brame J, Long M, Li Q, Alvarez P (2014) Trading oxidation power for efficiency: differential inhibition of photo-generated hydroxyl radicals versus singlet oxygen. Water Res 60:259–266. doi: 10.1016/j.watres.2014.05.005 CrossRefGoogle Scholar
  15. Brillas E, Martínez-Huitle CA (2015) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. An updated review. Appl Catal B Environ 166-167:603–643. doi: 10.1016/j.apcatb.2014.11.016 CrossRefGoogle Scholar
  16. Buthiyappan A, Abdul Aziz AR, Wan Daud WMA (2015) Degradation performance and cost implication of UV-integrated advanced oxidation processes for wastewater treatments. Rev Chem Eng 31:263–302. doi: 10.1515/revce-2014-0039 CrossRefGoogle Scholar
  17. Carabin A, Drogui P, Robert D (2015) Photo-degradation of carbamazepine using TiO2 suspended photocatalysts. J Taiwan Inst Chem Eng 54:109–117. doi: 10.1016/j.jtice.2015.03.006 CrossRefGoogle Scholar
  18. Choi J, Lee H, Choi Y, et al. (2014) Heterogeneous photocatalytic treatment of pharmaceutical micropollutants: effects of wastewater effluent matrix and catalyst modifications. Appl Catal B Environ 147:8–16. doi: 10.1016/j.apcatb.2013.08.032 CrossRefGoogle Scholar
  19. Chuang L-C, Luo C-H, Lin C-J (2011) Degradation characteristics of Sulfamethoxypyridazine in water by ozonation and photocatalysis. Procedia Eng 15:5133–5137. doi: 10.1016/j.proeng.2011.08.952 CrossRefGoogle Scholar
  20. Daghrir R, Drogui P, Dimboukou-Mpira A, El Khakani MA (2013) Photoelectrocatalytic degradation of carbamazepine using Ti/TiO2 nanostructured electrodes deposited by means of a pulsed laser deposition process. Chemosphere 93:2756–2766. doi: 10.1016/j.chemosphere.2013.09.031 CrossRefGoogle Scholar
  21. da Silva SW, Klauck CR, Siqueira MA, Bernardes AM (2015) Degradation of the commercial surfactant nonylphenol ethoxylate by advanced oxidation processes. J Hazard Mater 282:241–248. doi: 10.1016/j.jhazmat.2014.08.014 CrossRefGoogle Scholar
  22. Derrouiche S, Bourdin D, Roche P, et al. (2013) Process design for wastewater treatment: catalytic ozonation of organic pollutants. Water Sci Technol 68:1377–1383. doi: 10.2166/wst.2013.384 CrossRefGoogle Scholar
  23. Encinas A, Rivas FJ, Beltrán FJ, Oropesa A (2013) Combination of black-light photo-catalysis and ozonation for emerging contaminants degradation in secondary effluents. Chem Eng Technol 36:492–499. doi: 10.1002/ceat.201200311 CrossRefGoogle Scholar
  24. Epold I, Dulova N (2015) Oxidative degradation of levofloxacin in aqueous solution by S2O82−/Fe2 +, S2O82 /H2O2 and S2O82 /OH processes: a comparative study. J Environ Chem Eng 3:1207–1214. doi: 10.1016/j.jece.2015.04.019 CrossRefGoogle Scholar
  25. Epold I, Dulova N, Veressinina Y, Trapido M (2012) Application of ozonation, UV photolysis, Fenton treatment and other related processes for degradation of ibuprofen and sulfamethoxazole in different aqueous matrices. J Adv Oxid Technol 15:354–364Google Scholar
  26. Espejo A, Aguinaco A, Amat AM, Beltrán FJ (2014a) Some ozone advanced oxidation processes to improve the biological removal of selected pharmaceutical contaminants from urban wastewater. J Environ Sci Health-Part Toxic Hazardous Subst Environ Eng 49:410–421. doi: 10.1080/10934529.2014.854652 CrossRefGoogle Scholar
  27. Espejo A, Aguinaco A, García-Araya JF, Beltrán FJ (2014b) Sequential ozone advanced oxidation and biological oxidation processes to remove selected pharmaceutical contaminants from an urban wastewater. J Environ Sci Health-Part Toxic Hazardous Subst Environ Eng 49:1015–1022. doi: 10.1080/10934529.2014.894845 CrossRefGoogle Scholar
  28. Esplugas S, Bila DM, Krause LGT, Dezotti M (2007) Ozonation and advanced oxidation technologies to remove endocrine disrupting chemicals (EDCs) and pharmaceuticals and personal care products (PPCPs) in water effluents. J Hazard Mater 149:631–642. doi: 10.1016/j.jhazmat.2007.07.073 CrossRefGoogle Scholar
  29. vom Eyser C, Börgers A, Richard J, et al. (2013) Chemical and toxicological evaluation of transformation products during advanced oxidation processes. Water Sci Technol 68:1976–1983. doi: 10.2166/wst.2013.452 CrossRefGoogle Scholar
  30. Feng L, van Hullebusch ED, Rodrigo MA, et al. (2013) Removal of residual anti-inflammatory and analgesic pharmaceuticals from aqueous systems by electrochemical advanced oxidation processes. A review. Chem Eng J 228:944–964. doi: 10.1016/j.cej.2013.05.061 CrossRefGoogle Scholar
  31. Fernández-Castro P, Vallejo M, San Román MF, Ortiz I (2015) Insight on the fundamentals of advanced oxidation processes: role and review of the determination methods of reactive oxygen species. J Chem Technol Biotechnol 90:796–820. doi: 10.1002/jctb.4634 CrossRefGoogle Scholar
  32. Ganzenko O, Oturan N, Huguenot D, et al. (2015) Removal of psychoactive pharmaceutical caffeine from water by electro-Fenton process using BDD anode: effects of operating parameters on removal efficiency. Sep Purif Technol 156. Part 3:987–995. doi: 10.1016/j.seppur.2015.09.055 Google Scholar
  33. Garcia-Segura S, Keller J, Brillas E, Radjenovic J (2015) Removal of organic contaminants from secondary effluent by anodic oxidation with a boron-doped diamond anode as tertiary treatment. J Hazard Mater 283:551–557. doi: 10.1016/j.jhazmat.2014.10.003 CrossRefGoogle Scholar
  34. George SJ, Gandhimathi R, Nidheesh PV, Ramesh ST (2014) Electro-Fenton oxidation of salicylic acid from aqueous solution: batch studies and degradation pathway. Clean-Soil Air Water 42:1701–1711. doi: 10.1002/clen.201300453 CrossRefGoogle Scholar
  35. Gerrity D, Gamage S, Jones D, et al. (2012) Development of surrogate correlation models to predict trace organic contaminant oxidation and microbial inactivation during ozonation. Water Res 46:6257–6272. doi: 10.1016/j.watres.2012.08.037 CrossRefGoogle Scholar
  36. Gerrity D, Stanford BD, Trenholm RA, Snyder SA (2010) An evaluation of a pilot-scale nonthermal plasma advanced oxidation process for trace organic compound degradation. Water Res 44:493–504. doi: 10.1016/j.watres.2009.09.029 CrossRefGoogle Scholar
  37. Ghafoori S, Mowla A, Jahani R, et al. (2015) Sonophotolytic degradation of synthetic pharmaceutical wastewater: statistical experimental design and modeling. J Environ Manag 150:128–137. doi: 10.1016/j.jenvman.2014.11.011 CrossRefGoogle Scholar
  38. Ghauch A, Tuqan AM, Kibbi N (2015) Naproxen abatement by thermally activated persulfate in aqueous systems. Chem Eng J 279:861–873. doi: 10.1016/j.cej.2015.05.067 CrossRefGoogle Scholar
  39. Glaze WH (1987) Drinking-water treatment with ozone. Ozone is a powerful disinfectant and oxidant, but its chemical byproducts need to be better understood. Environ Sci Technol 21:224–230. doi: 10.1021/es00157a001 CrossRefGoogle Scholar
  40. Herrera-Melián JA, Torres-Padrón ME, Betancor-Abreu A, et al. (2015) Clogging reduction and removal of hormone residues with laboratory-scale vertical flow organic-based filter and hybrid wetland. Int J Environ Sci Technol 12:1039–1052CrossRefGoogle Scholar
  41. Hey G, Vega SR, Fick J, et al. (2014) Removal of pharmaceuticals in WWTP effluents by ozone and hydrogen peroxide. Water SA 40:165–173. doi: 10.4314/wsa.v40i1.20 CrossRefGoogle Scholar
  42. Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices - a review. J Environ Manag 92:2304–2347. doi: 10.1016/j.jenvman.2011.05.023 CrossRefGoogle Scholar
  43. Huber MM, Canonica S, Park G-Y, Von GU (2003) Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environ Sci Technol 37:1016–1024. doi: 10.1021/es025896h CrossRefGoogle Scholar
  44. Ibáñez M, Gracia-Lor E, Bijlsma L, et al. (2013) Removal of emerging contaminants in sewage water subjected to advanced oxidation with ozone. J Hazard Mater 260:389–398. doi: 10.1016/j.jhazmat.2013.05.023 CrossRefGoogle Scholar
  45. Ikehata K, Gamal El-Din M, Snyder SA (2008) Ozonation and advanced oxidation treatment of emerging organic pollutants in water and wastewater. Ozone Sci Eng 30:21–26. doi: 10.1080/01919510701728970 CrossRefGoogle Scholar
  46. Ikehata K, Naghashkar NJ, El-Din MG (2006) Degradation of aqueous pharmaceuticals by ozonation and advanced oxidation processes: a review. Ozone Sci Eng 28:353–414. doi: 10.1080/01919510600985937 CrossRefGoogle Scholar
  47. Illés E, Szabó E, Takács E, et al. (2014) Ketoprofen removal by O3 and O3/UV processes: kinetics, transformation products and ecotoxicity. Sci Total Environ 472:178–184. doi: 10.1016/j.scitotenv.2013.10.119 CrossRefGoogle Scholar
  48. Im J-K, Yoon J, Her N, et al. (2015) Sonocatalytic-TiO2 nanotube, Fenton, and CCl4 reactions for enhanced oxidation, and their applications to acetaminophen and naproxen degradation. Sep Purif Technol 141:1–9. doi: 10.1016/j.seppur.2014.11.021 CrossRefGoogle Scholar
  49. Ince NH, Tezcanli G, Belen RK, Apikyan G (2001) Ultrasound as a catalyzer of aqueous reaction systems: the state of the art and environmental applications. Appl Catal B Environ 29:167–176. doi: 10.1016/S0926-3373(00)00224-1 CrossRefGoogle Scholar
  50. James CP, Germain E, Judd S (2014) Micropollutant removal by advanced oxidation of microfiltered secondary effluent for water reuse. Sep Purif Technol 127:77–83. doi: 10.1016/j.seppur.2014.02.016 CrossRefGoogle Scholar
  51. Jin X, Peldszus S, Huck PM (2012) Reaction kinetics of selected micropollutants in ozonation and advanced oxidation processes. Water Res 46:6519–6530. doi: 10.1016/j.watres.2012.09.026 CrossRefGoogle Scholar
  52. José HJ, Gebhardt W, Moreira RFPM, et al. (2010) Advanced oxidation processes for the elimination of drugs resisting biological membrane treatment. Ozone Sci Eng 32:305–312. doi: 10.1080/01919512.2010.508194 CrossRefGoogle Scholar
  53. Justo A, González O, Sans C, Esplugas S (2015) BAC filtration to mitigate micropollutants and EfOM content in reclamation reverse osmosis brines. Chem Eng J 279:589–596. doi: 10.1016/j.cej.2015.05.018 CrossRefGoogle Scholar
  54. Kanakaraju D, Glass BD, Oelgemöller M (2014) Titanium dioxide photocatalysis for pharmaceutical wastewater treatment. Environ Chem Lett 12:27–47. doi: 10.1007/s10311-013-0428-0 CrossRefGoogle Scholar
  55. Keen OS, Baik S, Linden KG, et al. (2012) Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation. Environ Sci Technol 46:6222–6227. doi: 10.1021/es300897u CrossRefGoogle Scholar
  56. Fent K, Weston AA, Caminada D (2006) Ecotoxicology of human pharmaceuticals. Aquat Toxicol 76:122–159. doi: doi: 10.1016/j.aquatox.2005.09.009
  57. Kim I, Tanaka H (2010) Use of ozone-based processes for the removal of pharmaceuticals detected in a wastewater treatment plant. Water Environ Res 82:294–301CrossRefGoogle Scholar
  58. Klamerth N, Malato S, Maldonado MI, et al. (2010) Application of photo-Fenton as a tertiary treatment of emerging contaminants in municipal wastewater. Environ Sci Technol 44:1792–1798. doi: 10.1021/es903455p CrossRefGoogle Scholar
  59. Klamerth N, Malato S, Maldonado MI, et al. (2011) Modified photo-Fenton for degradation of emerging contaminants in municipal wastewater effluents. Catal Today 161:241–246. doi: 10.1016/j.cattod.2010.10.074 CrossRefGoogle Scholar
  60. Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417. doi: 10.1016/j.envint.2008.07.009 CrossRefGoogle Scholar
  61. Köhler C, Venditti S, Igos E, et al. (2012) Elimination of pharmaceutical residues in biologically pre-treated hospital wastewater using advanced UV irradiation technology: a comparative assessment. J Hazard Mater 239–240:70–77. doi: 10.1016/j.jhazmat.2012.06.006 CrossRefGoogle Scholar
  62. Lajeunesse A, Blais M, Barbeau B, et al. (2013) Ozone oxidation of antidepressants in wastewater –treatment evaluation and characterization of new by-products by LC-QToFMS. Chem Cent J 7:1–11. doi: 10.1186/1752-153X-7-15 CrossRefGoogle Scholar
  63. Lee Y, Kovalova L, McArdell CS, von Gunten U (2014) Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Res 64:134–148. doi: 10.1016/j.watres.2014.06.027 CrossRefGoogle Scholar
  64. Lester Y, Mamane H, Avisar D, Gozlan I (2011) Removal of pharmaceuticals using combination of UV/H2O2/O3 advanced oxidation process. Water Sci Technol 64:2230–2238. doi: 10.2166/wst.2011.079 CrossRefGoogle Scholar
  65. Levchuk I, Bhatnagar A, Sillanpää M (2014) Overview of technologies for removal of methyl tert-butyl ether (MTBE) from water. Sci Total Environ 476-477:415–433. doi: 10.1016/j.scitotenv.2014.01.037 CrossRefGoogle Scholar
  66. Li X, Wang Y, Yuan S, et al. (2014) Degradation of the anti-inflammatory drug ibuprofen by electro-peroxone process. Water Res 63:81–93. doi: 10.1016/j.watres.2014.06.009 CrossRefGoogle Scholar
  67. Luo Y, Guo W, Ngo HH, et al. (2014) A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci Total Environ 473–474:619–641. doi: 10.1016/j.scitotenv.2013.12.065 CrossRefGoogle Scholar
  68. Martínez-Huitle CA, Brillas E (2009) Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods: a general review. Appl Catal B Environ 87:105–145. doi: 10.1016/j.apcatb.2008.09.017 CrossRefGoogle Scholar
  69. Matta R, Tlili S, Chiron S, Barbati S (2011) Removal of carbamazepine from urban wastewater by sulfate radical oxidation. Environ Chem Lett 9:347–353. doi: 10.1007/s10311-010-0285-z CrossRefGoogle Scholar
  70. Miralles-Cuevas S, Oller I, Pérez JAS, Malato S (2014a) Removal of pharmaceuticals from MWTP effluent by nanofiltration and solar photo-Fenton using two different iron complexes at neutral pH. Water Res 64:23–31. doi: 10.1016/j.watres.2014.06.032 CrossRefGoogle Scholar
  71. Miralles-Cuevas S, Oller I, Ruiz Aguirre A, et al. (2014b) Removal of pharmaceuticals at microg L-1 by combined nanofiltration and mild solar photo-Fenton. Chem Eng J 239:68–74. doi: 10.1016/j.cej.2013.10.047 CrossRefGoogle Scholar
  72. Mohapatra DP, Brar SK, Tyagi RD, et al. (2014) Analysis and advanced oxidation treatment of a persistent pharmaceutical compound in wastewater and wastewater sludge-carbamazepine. Sci Total Environ 470-471:58–75. doi: 10.1016/j.scitotenv.2013.09.034 CrossRefGoogle Scholar
  73. Moreira NFF, Orge CA, Ribeiro AR, et al. (2015) Fast mineralization and detoxification of amoxicillin and diclofenac by photocatalytic ozonation and application to an urban wastewater. Water Res 87:87–96. doi: 10.1016/j.watres.2015.08.059 CrossRefGoogle Scholar
  74. Mowla A, Mehrvar M, Dhib R (2014) Combination of sonophotolysis and aerobic activated sludge processes for treatment of synthetic pharmaceutical wastewater. Chem Eng J 255:411–423. doi: 10.1016/j.cej.2014.06.064 CrossRefGoogle Scholar
  75. Munoz M, de Pedro ZM, Casas JA, Rodriguez JJ (2012) Triclosan breakdown by Fenton-like oxidation. Chem Eng J 198-199:275–281. doi: 10.1016/j.cej.2012.05.097 CrossRefGoogle Scholar
  76. Naddeo V, Landi M, Scannapieco D, Belgiorno V (2013) Sonochemical degradation of twenty-three emerging contaminants in urban wastewater. Desalination Water Treat 51:6601–6608. doi: 10.1080/19443994.2013.769696 CrossRefGoogle Scholar
  77. Naddeo V, Ricco D, Scannapieco D, et al. (2012) Degradation of antibiotics in wastewater during sonolysis, ozonation, and their simultaneous application: operating conditions effects and processes evaluation, degradation of antibiotics in wastewater during sonolysis, ozonation, and their simultaneous application: operating conditions effects and processes evaluation. Int J Photoenergy 2012:e624270. doi: 10.1155/2012/624270 CrossRefGoogle Scholar
  78. Nejumal KK, Manoj PR, Aravind UK, Aravindakumar CT (2014) Sonochemical degradation of a pharmaceutical waste, atenolol, in aqueous medium. Environ Sci Pollut Res 21:4297–4308. doi: 10.1007/s11356-013-2301-x CrossRefGoogle Scholar
  79. Nielsen U, Hastrup C, Klausen MM, et al. (2013) Removal of APIs and bacteria from hospital wastewater by MBR plus O3, O3, + H2O2, PAC or CIO2. Water Sci Technol 67:854–862. doi: 10.2166/wst.2012.645 CrossRefGoogle Scholar
  80. Olariu R-I, Vione D, Grinberg N, Arsene C (2010) Sample preparation for trace analysis by chromatographic methods. J Liq Chromatogr Relat Technol 33:1174–1207. doi: 10.1080/10826076.2010.484371 CrossRefGoogle Scholar
  81. Oturan MA, Aaron J-J (2014) Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit Rev Environ Sci Technol 44:2577–2641. doi: 10.1080/10643389.2013.829765 CrossRefGoogle Scholar
  82. Palo P, Domínguez JR, Sánchez-Martín J (2012) Ozonation of a carbamazepine effluent. Designing the operational parameters under economic considerations. Water Air Soil Pollut 223:5999–6007. doi: 10.1007/s11270-012-1334-y CrossRefGoogle Scholar
  83. Pereira VJ, Galinha J, Barreto Crespo MT, et al. (2012) Integration of nanofiltration, UV photolysis, and advanced oxidation processes for the removal of hormones from surface water sources. Sep Purif Technol 95:89–96. doi: 10.1016/j.seppur.2012.04.013 CrossRefGoogle Scholar
  84. Pisarenko AN, Stanford BD, Yan D, et al. (2012) Effects of ozone and ozone/peroxide on trace organic contaminants and NDMA in drinking water and water reuse applications. Water Res 46:316–326. doi: 10.1016/j.watres.2011.10.021 CrossRefGoogle Scholar
  85. Priac A, Morin-Crini N, Druart C, et al (2014) Alkylphenol and alkylphenol polyethoxylates in water and wastewater: a review of options for their elimination. Arab J Chem doi: doi: 10.1016/j.arabjc.2014.05.011
  86. Qin W, Song Y, Dai Y, et al. (2015) Treatment of berberine hydrochloride pharmaceutical wastewater by O3/UV/H2O2 advanced oxidation process. Environ Earth Sci 73:4939–4946. doi: 10.1007/s12665-015-4192-2 CrossRefGoogle Scholar
  87. Razavi B, Song W, Santoke H, Cooper WJ (2011) Treatment of statin compounds by advanced oxidation processes: kinetic considerations and destruction mechanisms. Radiat Phys Chem 80:453–461. doi: 10.1016/j.radphyschem.2010.10.004 CrossRefGoogle Scholar
  88. Real FJ, Benitez FJ, Acero JL, et al. (2012) Elimination of the emerging contaminants amitriptyline hydrochloride, methyl salicylate, and 2-phenoxyethanol in ultrapure water and secondary effluents by photolytic and radicalary pathways. Ind Eng Chem Res 51:16209–16215. doi: 10.1021/ie302470g CrossRefGoogle Scholar
  89. Reungoat J, Macova M, Escher BI, et al. (2010) Removal of micropollutants and reduction of biological activity in a full scale reclamation plant using ozonation and activated carbon filtration. Water Res 44:625–637. doi: 10.1016/j.watres.2009.09.048 CrossRefGoogle Scholar
  90. Ribeiro AR, Nunes OC, Pereira MFR, Silva AMT (2015) An overview on the advanced oxidation processes applied for the treatment of water pollutants defined in the recently launched directive 2013/39/EU. Environ Int 75:33–51. doi: 10.1016/j.envint.2014.10.027 CrossRefGoogle Scholar
  91. Rivera-Utrilla J, Sánchez-Polo M, Ferro-García MÁ, et al. (2013) Pharmaceuticals as emerging contaminants and their removal from water. A review. Chemosphere 93:1268–1287. doi: 10.1016/j.chemosphere.2013.07.059 CrossRefGoogle Scholar
  92. Rodríguez A, Rosal R, Gomez MJ, et al. (2011) Ozone-based reclamation of an STP effluent. Water Sci Technol 63:2123–2130. doi: 10.2166/wst.2011.298 CrossRefGoogle Scholar
  93. Romero V, De La Cruz N, Dantas RF, et al. (2011) Photocatalytic treatment of metoprolol and propranolol. Catal Today 161:115–120. doi: 10.1016/j.cattod.2010.09.026 CrossRefGoogle Scholar
  94. Romero V, Méndez-Arriaga F, Marco P, et al. (2014) Comparing the photocatalytic oxidation of metoprolol in a solarbox and a solar pilot plant reactor. Chem Eng J 254:17–29. doi: 10.1016/j.cej.2014.05.109 CrossRefGoogle Scholar
  95. Rosario-Ortiz FL, Wert EC, Snyder SA (2010) Evaluation of UV/H2O2 treatment for the oxidation of pharmaceuticals in wastewater. Water Res 44:1440–1448. doi: 10.1016/j.watres.2009.10.031 CrossRefGoogle Scholar
  96. Saghafinia MS, Emadian SM, Vossoughi M (2011) Performances evaluation of photo-Fenton process and sonolysis for the treatment of penicillin G formulation effluent. Procedia Environ Sci 8:202–208. doi: 10.1016/j.proenv.2011.10.033 CrossRefGoogle Scholar
  97. Sarp S, Chon K, Kim IS, Cho J (2011) Advanced treatment of membrane bioreactor (MBR) effluents for effective wastewater reclamation. Water Sci Technol 63:303–310. doi: 10.2166/wst.2011.054 CrossRefGoogle Scholar
  98. Sathishkumar P, Mangalaraja RV, Anandan S (2016) Review on the recent improvements in sonochemical and combined sonochemical oxidation processes—a powerful tool for destruction of environmental contaminants. Renew Sust Energ Rev 55:426–454. doi: 10.1016/j.rser.2015.10.139 CrossRefGoogle Scholar
  99. Secondes MFN, Naddeo V, Belgiorno V, Ballesteros F Jr (2014) Removal of emerging contaminants by simultaneous application of membrane ultrafiltration, activated carbon adsorption, and ultrasound irradiation. J Hazard Mater 264:342–349. doi: 10.1016/j.jhazmat.2013.11.039 CrossRefGoogle Scholar
  100. Shu Z, Bolton JR, Belosevic M, Gamal El Din M (2013) Photodegradation of emerging micropollutants using the medium-pressure UV/H2O2 advanced oxidation process. Water Res 47:2881–2889. doi: 10.1016/j.watres.2013.02.045 CrossRefGoogle Scholar
  101. Sichel C, Garcia C, Andre K (2011) Feasibility studies: UV/chlorine advanced oxidation treatment for the removal of emerging contaminants. Water Res 45:6371–6380. doi: 10.1016/j.watres.2011.09.025 CrossRefGoogle Scholar
  102. Sikarwar S, Jain R (2015) Nano photo catalytic degradation of the pharmaceutical agent balsalazide under UV slurry photo reactor. Water Air Soil Pollut 226:1–12. doi: 10.1007/s11270-015-2531-2 CrossRefGoogle Scholar
  103. Singh RR, Lester Y, Linden KG, et al. (2015) Application of metabolite profiling tools and time-of-flight mass spectrometry in the identification of transformation products of iopromide and iopamidol during advanced oxidation. Environ Sci Technol 49:2983–2990. doi: 10.1021/es505469h CrossRefGoogle Scholar
  104. Thennarasu G, Sivasamy A (2015) Synthesis and characterization of nanolayered ZnO/ZnCr2O4 metal oxide composites and its photocatalytic activity under visible light irradiation. J Chem Technol Biotechnol 90:514–524. doi: 10.1002/jctb.4343 CrossRefGoogle Scholar
  105. Torun M, Gültekin Ö, Şolpan D, Güven O (2015) Mineralization of paracetamol in aqueous solution with advanced oxidation processes. Environ Technol 36:970–982. doi: 10.1080/09593330.2014.970585 CrossRefGoogle Scholar
  106. Tran N, Drogui P, Nguyen L, Brar SK (2015) Optimization of sono-electrochemical oxidation of ibuprofen in wastewater. J Environ Chem Eng 3:2637–2646. doi: 10.1016/j.jece.2015.05.001 CrossRefGoogle Scholar
  107. Trapido M, Epold I, Bolobajev J, Dulova N (2014) Emerging micropollutants in water/wastewater: growing demand on removal technologies. Environ Sci Pollut Res 21:12217–12222. doi: 10.1007/s11356-014-3020-7 CrossRefGoogle Scholar
  108. Trovó AG, Nogueira RFP (2011) Diclofenac abatement using modified solar photo-Fenton process with ammonium iron(III) citrate. J Braz Chem Soc 22:1033–1039. doi: 10.1590/S0103-50532011000600005 CrossRefGoogle Scholar
  109. Trovó AG, Pupo Nogueira RF, Agüera A, et al. (2011) Degradation of the antibiotic amoxicillin by photo-Fenton process – chemical and toxicological assessment. Water Res 45:1394–1402. doi: 10.1016/j.watres.2010.10.029 CrossRefGoogle Scholar
  110. Valavanidis A, Vlachogianni T, Loridas S, Fiotakis C (2014) An emerging environmental problem: disposed medicinal active products pharmaceuticals, antibiotics, and disinfectants in the aquatic environment and toxicological considerations. Pharmakeftiki 26:78–98Google Scholar
  111. Vasquez MI, Hapeshi E, Fatta-kassinos D, Kümmerer K (2013) Biodegradation potential of ofloxacin and its resulting transformation products during photolytic and photocatalytic treatment. Environ Sci Pollut Res Int 20:1302–1309. doi: 10.1007/s11356-012-1096-5 CrossRefGoogle Scholar
  112. Wille K, De BHF, Vanhaecke L, et al. (2012) Coupled chromatographic and mass-spectrometric techniques for the analysis of emerging pollutants in the aquatic environment. TrAC-Trends Anal Chem 35:87–108. doi: 10.1016/j.trac.2011.12.003 CrossRefGoogle Scholar
  113. Wols BA, Harmsen DJH, Wanders-Dijk J, et al. (2015) Degradation of pharmaceuticals in UV (LP)/H2O2 reactors simulated by means of kinetic modeling and computational fluid dynamics (CFD). Water Res 75:11–24. doi: 10.1016/j.watres.2015.02.014 CrossRefGoogle Scholar
  114. Wols BA, Hofman-Caris CHM (2012) Review of photochemical reaction constants of organic micropollutants required for UV advanced oxidation processes in water. Water Res 46:2815–2827. doi: 10.1016/j.watres.2012.03.036 CrossRefGoogle Scholar
  115. Wols BA, Hofman-Caris CHM, Harmsen DJH, Beerendonk EF (2013) Degradation of 40 selected pharmaceuticals by UV/H2O2. Water Res 47:5876–5888. doi: 10.1016/j.watres.2013.07.008 CrossRefGoogle Scholar
  116. Yang X, Flowers RC, Weinberg HS, Singer PC (2011) Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res 45:5218–5228. doi: 10.1016/j.watres.2011.07.026 CrossRefGoogle Scholar
  117. Yu H-W, Anumol T, Park M, et al. (2015) On-line sensor monitoring for chemical contaminant attenuation during UV/H2O2 advanced oxidation process. Water Res 81:250–260. doi: 10.1016/j.watres.2015.05.064 CrossRefGoogle Scholar
  118. Guo Y, Shen T, Wang C, et al. (2015) Rapid removal of caffeine in aqueous solutions by peroxymonosulfate oxidant activated with cobalt ion. Water Sci Technol 72:478–483. doi: 10.2166/wst.2015.151 CrossRefGoogle Scholar
  119. Zeng P, Du J, Song Y, et al. (2015) Efficiency comparison for treatment of amantadine pharmaceutical wastewater by Fenton, ultrasonic, and Fenton/ultrasonic processes. Environ Earth Sci 73:4979–4987. doi: 10.1007/s12665-015-4204-2 CrossRefGoogle Scholar
  120. Zhang D, Gersberg RM, Ng WJ, Tan SK (2014) Removal of pharmaceuticals and personal care products in aquatic plant-based systems: a review. Environ Pollut 184:620–639. doi: 10.1016/j.envpol.2013.09.009 CrossRefGoogle Scholar
  121. Zhang J, Chang VWC, Giannis A, Wang J-Y (2013) Removal of cytostatic drugs from aquatic environment: a review. Sci Total Environ 445-446:281–298. doi: 10.1016/j.scitotenv.2012.12.061 CrossRefGoogle Scholar
  122. Zhou H, Smith DW (2002) Advanced technologies in water and wastewater treatment. J Environ Eng Sci 1:247–264. doi: 10.1139/s02-020 CrossRefGoogle Scholar
  123. Zupanc M, Kosjek T, Petkovšek M, et al. (2014) Shear-induced hydrodynamic cavitation as a tool for pharmaceutical micropollutants removal from urban wastewater. Ultrason Sonochem 21:1213–1221. doi: 10.1016/j.ultsonch.2013.10.025 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cristina Afonso-Olivares
    • 1
  • Sarah Montesdeoca-Esponda
    • 1
  • Zoraida Sosa-Ferrera
    • 1
  • José Juan Santana-Rodríguez
    • 1
  1. 1.Instituto Universitario de Estudios Ambientales y Recursos Naturales (i-UNAT)Universidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations