Skip to main content

Advertisement

Log in

Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The plastic materials used for packaging are increasing leading to a considerable amount of undegradable solid wastes. This work deals with the reduction of conventional plastics waste and the natural resources preservation by using cellulosic polymers from renewable resources (alfa and luffa). Plasticized starch films syntheses were achieved at a laboratory scale. These natural films showed some very attractive mechanical properties at relatively low plasticizers levels (12 to 17 % by weight). Furthermore, mixtures including polylactic acid polymer (PLA) and cellulose fibers extracted from alfa and luffa were investigated by melt extrusion technique. When used at a rate of 10 %, these fibers improved the mixture mechanical properties. Both developed materials were biodegradable, but the plasticized starch exhibited a faster biodegradation kinetic compared to the PLA/cellulose fibers. These new materials would contribute to a sustainable development and a waste reduction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abou-Zeid DM, Muller RJ, Deckwer WDL (2001) Degradation of natural and synthetic polyesters under anaerobic conditions. J Biotechnol 86:113–126

    Article  CAS  Google Scholar 

  • Agarwal S, Wendorff JH, Greiner A (2008) Use of electrospinning technique for biomedical applications. Polymer 26:5603–5621

    Article  Google Scholar 

  • Amon T, Amson B, Karyvoruchko V, Machmuller A, Hopfner-Sixt K, et al. (2007) Methane production through anaerobic digestion of various energy crops grown in sustainable crop rotations. Bioresour Technol 98:3204–3212

    Article  CAS  Google Scholar 

  • Angellier H, Molina-Boisseau S, Dole P, Dufresne A (2006) Thermoplastic strach–waxy maize strach nanocrystals nanocomposites. Biomacromolecules 7:531–539

    Article  CAS  Google Scholar 

  • Araújo A, Oliveira M, Oliveira R, Botelho G, et al. (2014) Biodegradation assessement of PLA and its nanocomposites. Environ Sci Pollut Res 21:9477–9486

    Article  Google Scholar 

  • Averous L (2002) Etude de système polymers multiphasés: approche des relations matériaux-procédés-propriétés. Habilitation à diriger des recherches, Université de Reims Champagne-Ardenne. p 46

  • Averous L (2004) Biodegradable multiphase systems based on plasticized starch: a review. J Macromol Sci C Polym Rev 44:231–274

    Article  Google Scholar 

  • Averous L (2013) Synthesis, properties, environmental and biomedical applications of polylactic acid. In: Ebnesajjad S (ed) Handbook of biopolymers and biodegradable plastics. Elsevier, Boston

    Google Scholar 

  • Averous L, Halley PJ (2009) Biocomposites based on plasticized starch. Biofuels Bioprod Biorefin 3:329–343

    Article  CAS  Google Scholar 

  • Bai FW, Anderson WA, Moo-Young M (2008) Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol Adv 26:89–105

    Article  CAS  Google Scholar 

  • Bastioli C (2005) Handbook of biodegradable polymers

  • Ben Brahim S, Ben Cheikh R, Baklouti M (2001) The alfa fibres in composite materials, ID1620, In: International conference on composite materials. 13:25–29

  • Bersuder P, Hole M, Smith G (1998) Antioxidants from a heated histidine-glucose model system I: investigation of the antioxidant role of histidine and isolation of antioxidants by high-performance liquid chromatography. J Am Chem Soc 75:181–187

    CAS  Google Scholar 

  • Bessadok A, Langevin D, Gouanvé F, Chappey C, et al. (2009) Study of water sorption on modified agave fibres. Carbohydr Polym 76:74–85

    Article  CAS  Google Scholar 

  • Cao A, Okamura T, Ishiguro C, Nakayama K, et al. (2002) Polymer 43:671–679

    Article  CAS  Google Scholar 

  • Catro G, Panilaitis B, Kaplan D (2008) Emulsan, a tailorable biopolymer for controlled release. Bioresour Technol 99:4566–4571

    Article  Google Scholar 

  • Chen L, Iman SH, Stein TM, Gordon SH (1997) Starch-polyvinyl alcohol cast film-performance and biodegradation. Polym Prepr 37:461–462

    Google Scholar 

  • Chiellini E, Corti A, Solaro R (1999) Biodegradation of poly(vinyl alcohol) based blown films under different environmental conditions. Polym Degrad Stab 64:305–312

    Article  CAS  Google Scholar 

  • Coma V (1992) Proposition d’une méthodologie pour l’estimation de la biodégradabilité de matériaux d’emballage, Thèse de l’Université Champagne-Ardenne

  • Curvelo AA, de Carvalho A, Agnelli JAM (2001) Thermoplastic starch–cellulosic fibers composites: preliminary results. Carbohydr Polym 45:183–188

    Article  CAS  Google Scholar 

  • de Moraes CT, Haas Costa TM, de Oliveira RA, Hickmann Flôres S (2016) Valorization of food-grade industrial waste in the obtaining active biodegradable films for packaging. Ind Crop Prod 87:218–228

    Article  Google Scholar 

  • Degli-Innocenti F, Bellia G, Tosin M, Kapanen A (2001) Detection of toxicity released by biodegradable plastics after composting in activated vermiculite. Polym Degrad Stab 73:101

    Article  CAS  Google Scholar 

  • Dersch R, Greiner R, Wendorff JH (2004) Polymer nanofibers by electrospinning. In: Dekker Encyclopedia of Nanoscience and Nanotechnology. New York, USA

  • El Hadji BLY (2008) Nouveaux matériaux composites thermo formables à base de fibres de cellulose. Thèse de Doctorat Université de Grenoble. p 19–21

  • Fukushima K, Abbate C, Tabuani D, Gennari M (2009) Biodegradation of poly(lactic acid) and its nanocomposites. Polym Degrad Stab 94:1646–1655

    Article  CAS  Google Scholar 

  • Greiner A, Wendorff JH (2007) Electrospinning: a fascinating method for the preparation of ultrathin fibers. Angew Chem Int Ed :5670–5703

  • Gilfillan WN, Moghaddam L, Bartley J, Doherty WOS (2016) Thermal extrusion of starch film with alcohol. J Food Eng 170:92–99

    Article  CAS  Google Scholar 

  • Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267

    Article  CAS  Google Scholar 

  • Hopewell J, Dvorak R, Kosior E (2009) Plastics recycling: challenges and opportunities. Philos Trans R Soc B 364:2115–2126

    Article  CAS  Google Scholar 

  • Huang ZM, Zhang YZ, Kotaki M, Ramakrishna S (2003) Modeling inelastic and strength properties of textile laminates: a unified approach. Compos Sci Technol 63:2223–2253

    Article  CAS  Google Scholar 

  • Ishiaku US, Pang KW, Lee WS, Ishak ZAM (2002) Mechanical properties and enzymic degradation of thermoplastic and granular sago starch filled poly(ε-caprolactone). Eur Polym J 38:393–401

    Article  CAS  Google Scholar 

  • Jamai L, Ettayebi K, El Yamani J, Ettayebi M (2007) Production of ethanol from starch by free and immobilized Candida tropicalis in the presence of α-amylase. Bioresour Technol 98:2765–2770

    Article  CAS  Google Scholar 

  • Jridi M, Souissi N, Mbarek A, Chadeyron G, et al. (2013) Comparative study of physico-mechanical and antioxidant properties of edible gelatin films from the skin of cuttlefish. Int J Biol Macromol 61:17–25

    Article  CAS  Google Scholar 

  • Kale G, Kijchavengkul T, Auras R, Rubino M, et al. (2007) Compostability of bioplastic packaging materials: an overview. Macromol Biosci 8:255–277

    Article  Google Scholar 

  • Knechtel RJ (1978) A more economical method for the determination of chemical oxygen demand. Water Pollut Control:25–29

  • Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel. Adv Mater 16:1151–1170

    Article  CAS  Google Scholar 

  • Lourdin, N, Della Valle, G, & Golonna, P (1999) Polymères biodégradables: mise en œuvre et propriétés de l’amidon, Caoutchoucs et plastiques

  • Oksman K, Skrifvars M, Selin JF (2003) Natural fibres as reinforcement in polylactic acid (PLA) composites. Compos Sci Technol 63:1317–1324

    Article  CAS  Google Scholar 

  • Orhan Y, Buyukgungor H (2000) Enhancement of biodegradability of disposable polyethylene in controlled biological soil. Int Biodeterior Biodegrad 45:49–55

    Article  CAS  Google Scholar 

  • Mano JF, Sousa RA, Boesel LF, Neves NM, Reis RL (2004) Bioinert, biodegrabadle and injectable polymeric matrix composites for hard tissue replacement: state of the art and recent development. J Comput Sci Technol 64:789–817

    Article  CAS  Google Scholar 

  • Pêgo AP, Poot AA, Grijpma DW, Feijen J (2013) Biodegradable elastomeric scaffolds for soft tissue engineering. J Control Release 87:69–79

    Article  Google Scholar 

  • Perez S, Baldwin PM, Gallant DJ (2009) Structural features of starch granules. Academic Press, San Diego

    Book  Google Scholar 

  • Rasato D (2009) The emerging world of bioplastics: an industry ‘father’ looks forward

  • Reneker DH, Yarin AL, Zussman E, Xu H (2007) Adv Appl Mech 41:43–195

    Article  Google Scholar 

  • Rudnik E (2013) Biodegradability testing of compostable polymer materials. In: Handbook of Biopolymers and Biodegradable Plastics: Properties, Processing and Applications. p 213–263

  • Sharma SK, Mudhoo AA (2011) Handbook of applied biopolymer technology: synthesis, degradation and applications. RSC Publishing, Cambridge

    Book  Google Scholar 

  • Shirai MA, Grossmann MVE, Mali S, Yamashita F et al (2013) Development of biodegradable flexible films of starch and poly(lactic acid) plasticized with adipate or citrate esters. Carbohydr Polym :19–22

  • Sweetlove C, Chenèble J, Barthel Y, et al. (2016) Evaluating the ready biodegradability of two poorly water-soluble substances: comparative approach of bioavailability improvement methods (BIMs). Environ Sci Pollut Res. doi:10.1007/s11356-016-6899-3

    Google Scholar 

  • Tadasa K, Takeda K (1986) Anaerobic digestion of raw starch by bacillus species. J Ferment Technol 64:81–85

    Article  CAS  Google Scholar 

  • The Phan D, Debeaufort F, Voilley A, Luu D (2009) Biopolymer interactions affect the functional properties of edible films based on agar, cassava starch and arabinoxylan blends. J Food Eng 90:548–558

    Article  Google Scholar 

  • Thouand G (2014) Biodegradability assessments of organic substances and polymers. Environ Sci Pollut Res 16:9443–9444

    Article  Google Scholar 

  • Urtuvia V, Villegas P, González M, Seeger M (2014) Bacterial production of the biodegradable plastics polyhydroxyalkanoates. Int J Biol Macromol 70:208–213

    Article  CAS  Google Scholar 

  • Wang H, Gao XD, Zhou GC, Cai L, et al. (2008) In vitro and in vivo antioxidant activity of aqueous extract from Choerospondias axillaris fruit. Food Chem 106:888–895

    Article  CAS  Google Scholar 

  • Xie F, Halley PJ, Averous L (2012) Rheology to understand and optimize processibility, structures and properties of starch polymeric materials. Polym Sci 37:595–623

    CAS  Google Scholar 

  • Yang H, Shen J (2006) Effect of ferrous iron concentration on anaerobic bio-hydrogen production from soluble starch. Int J Hydrog Energy 31:2137–2146

    Article  CAS  Google Scholar 

  • Zhang QX, Yu ZZ, Xie XL, Naito K, et al. (2007) Nanocomposites. Polymer 48:7193–7200

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. Ayadi Hajji for his help in proof reading and correcting the English of our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emna Ammar.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masmoudi, F., Bessadok, A., Dammak, M. et al. Biodegradable packaging materials conception based on starch and polylactic acid (PLA) reinforced with cellulose. Environ Sci Pollut Res 23, 20904–20914 (2016). https://doi.org/10.1007/s11356-016-7276-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7276-y

Keywords

Navigation