Environmental Science and Pollution Research

, Volume 25, Issue 5, pp 3951–3964 | Cite as

Application of effect-directed analysis to identify mutagenic nitrogenous disinfection by-products of advanced oxidation drinking water treatment

  • D. Vughs
  • K. A. BakenEmail author
  • A. Kolkman
  • A. J. Martijn
  • P. de Voogt
Effect-related evaluation of anthropogenic trace substances, -concepts for genotoxicity, neurotoxicity and, endocrine effects


Advanced oxidation processes are important barriers for organic micropollutants in (drinking) water treatment. It is however known that medium pressure UV/H2O2 treatment may lead to mutagenicity in the Ames test, which is no longer present after granulated activated carbon (GAC) filtration. Many nitrogen-containing disinfection by-products (N-DBPs) result from the reaction of photolysis products of nitrate with (photolysis products of) natural organic material (NOM) during medium pressure UV treatment of water. Identification of the N-DBPs and the application of effect-directed analysis to combine chemical screening results with biological activity would provide more insight into the relation of specific N-DBPs with the observed mutagenicity and was the subject of this study. To this end, fractions of medium pressure UV-treated and untreated water extracts were prepared using preparative HPLC and tested using the Ames fluctuation test. In addition, high-resolution mass spectrometry was performed on all fractions to assess the presence of N-DBPs. Based on toxicity data and read across analysis, we could identify five N-DBPs that are potentially genotoxic and were present in relatively high concentrations in the fractions in which mutagenicity was observed. The results of this study offer opportunities to further evaluate the identity and potential health concern of N-DBPs formed during advanced oxidation UV drinking water treatment.


Disinfection by-products Advanced oxidation processes Medium pressure ultraviolet technology Nitrate photolysis Effect-directed analysis Fractionation High-resolution mass spectrometry Ames fluctuation test 



This study was cofinanced with TKI funding from the Topconsortia for Knowledge & Innovation (TKI’s) of the Ministry of Economic Affairs of the Netherlands.

Supplementary material

11356_2016_7252_MOESM1_ESM.docx (1 mb)
ESM 1 (DOCX 1067 kb)


  1. Bolton J, Linden K (2003) Standardization of methods for fluence (UV dose) determination in bench-scale UV experiments. J Environ Eng 129:209–215. doi: 10.1061/(ASCE)0733-9372(2003)129:3(209) CrossRefGoogle Scholar
  2. Bond T, Huang J, Templeton MR, Graham N (2011) Occurrence and control of nitrogenous disinfection by-products in drinking water--a review. Water Res 45:4341–4354. doi: 10.1016/j.watres.2011.05.034 CrossRefGoogle Scholar
  3. Brack W (2003) Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Anal Bioanal Chem 377:397–407. doi: 10.1007/s00216-003-2139-z CrossRefGoogle Scholar
  4. Brack W et al. (2016) Effect-directed analysis supporting monitoring of aquatic environments - an in-depth overview. Sci Total Environ 544:1073–1118. doi: 10.1016/j.scitotenv.2015.11.102 CrossRefGoogle Scholar
  5. Cerna M, Pastorkova A, Smid J, Bavorova H, Ocadlikova D, Rossner P, Zavadil J (1996) Genotoxicity of industrial effluents, river waters, and their fractions using the Ames test and in vitro cytogenetic assay. Toxicol Lett 88:191–197CrossRefGoogle Scholar
  6. EPA US (2012) 2012 edition of the drinking water standards and health advisories EPA 822-S-12-001. U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  7. European Chemicals Agency Information on Registered Substances (2015) Available at:
  8. Fawell J (2012) Chemicals in the water environment. Where do the real and future threats lie? Ann Ist Super Sanita 48:347–353. doi: 10.4415/ANN_12_04_02 CrossRefGoogle Scholar
  9. Gallampois CM, Schymanski EL, Bataineh M, Buchinger S, Krauss M, Reifferscheid G, Brack W (2013) Integrated biological-chemical approach for the isolation and selection of polyaromatic mutagens in surface waters. Anal Bioanal Chem 405:9101–9112. doi: 10.1007/s00216-013-7349-4 CrossRefGoogle Scholar
  10. Gallampois CM, Schymanski EL, Krauss M, Ulrich N, Bataineh M, Brack W (2015) Multicriteria approach to select polyaromatic river mutagen candidates. Environ Sci Technol 49:2959–2968. doi: 10.1021/es503640k CrossRefGoogle Scholar
  11. Grellier J, Rushton L, Briggs DJ, Nieuwenhuijsen MJ (2015) Assessing the human health impacts of exposure to disinfection by-products--a critical review of concepts and methods. Environ Int 78:61–81. doi: 10.1016/j.envint.2015.02.003 CrossRefGoogle Scholar
  12. Heringa MB, Harmsen DJH, Beerendonk EF, Reus AA, Krul CAM, Metz DH, Ijpelaar GF (2011) Formation and removal of genotoxic activity during UV/H2O2-GAC treatment of drinking water. Water Res 45:366–374CrossRefGoogle Scholar
  13. Higley E et al. (2012) Endocrine disrupting, mutagenic, and teratogenic effects of upper Danube River sediments using effect-directed analysis. Environ Toxicol Chem/SETAC 31:1053–1062. doi: 10.1002/etc.1777 CrossRefGoogle Scholar
  14. Hofman-Caris RC, Harmsen DJ, Puijker L, Baken KA, Wols BA, Beerendonk EF, Keltjens LL (2015) Influence of process conditions and water quality on the formation of mutagenic byproducts in UV/H2O2 processes. Water Res 74:191–202. doi: 10.1016/j.watres.2015.01.035 CrossRefGoogle Scholar
  15. Homem V, Santos L (2011) Degradation and removal methods of antibiotics from aqueous matrices--a review. J Environ Manag 92:2304–2347. doi: 10.1016/j.jenvman.2011.05.023 CrossRefGoogle Scholar
  16. Hughes R (2013) Formation of genotoxic compounds by medium pressure ultraviolet treatment of pre-treated surface water and groundwater. University of New Hampshire, Ann Arbor. doi: 10.1016/j.watres.2010.08.008 Google Scholar
  17. International Agency for Research on Cancer (IARC) (2016) Agents Classified by the IARC Monographs, Volumes 1–115 Available at:
  18. Kleiser G, Frimmel FH (2000) Removal of precursors for disinfection by-products (Dbps)--differences between ozone- and OH-radical-induced oxidation. Sci Total Environ 256:1–9CrossRefGoogle Scholar
  19. Kolkman A, Martijn B, Vughs D, Baken KA, van Wezel AP (2015) Tracing nitrogenous disinfection byproducts after medium pressure UV water treatment by stable isotope labeling and high resolution mass spectrometry. Environ Sci Technol 49:4458–4465. doi: 10.1021/es506063h CrossRefGoogle Scholar
  20. Kundu B et al. (2004) Comparative mutagenicity of halomethanes and halonitromethanes in salmonella TA100: structure-activity analysis and mutation spectra. Mutat Res 554:335–350. doi: 10.1016/j.mrfmmm.2004.05.015 CrossRefGoogle Scholar
  21. Liu L, Chen L, Floehr T, Xiao H, Bluhm K, Hollert H, Wu L (2015) Assessment of the mutagenicity of sediments from Yangtze River estuary using salmonella typhimurium/Microsome assay. PLoS One 10:e0143522. doi: 10.1371/journal.pone.0143522 CrossRefGoogle Scholar
  22. Martijn A, Kruithof J (2012) UV and UV/H2O2 treatment: the silver bullet for by-product and genotoxicity formation in water production. Ozone Sci Eng 34:92–100. doi: 10.1080/01919512.2012.649596 CrossRefGoogle Scholar
  23. National Library of Medicine (US) (2011) Hazardous Substances Data Bank [Internet] Available at:
  24. OECD (2013) QSAR Toolbox for Grouping Chemicals into Categories version Available at:
  25. Richardson SD, Kimura SY (2016) Water analysis: emerging contaminants and current issues. Anal Chem 88:546–582. doi: 10.1021/acs.analchem.5b04493 CrossRefGoogle Scholar
  26. Richardson SD, Plewa MJ, Wagner ED, Schoeny R, Demarini DM (2007) Occurrence, genotoxicity, and carcinogenicity of regulated and emerging disinfection by-products in drinking water: a review and roadmap for research. Mutat Res 636:178–242. doi: 10.1016/j.mrrev.2007.09.001 CrossRefGoogle Scholar
  27. Rijksinstituut voor Volksgezondheid en Milieu (RIVM) (2015) Risico’s van Stoffen. Available at:
  28. Schymanski EL, Jeon J, Gulde R, Fenner K, Ruff M, Singer HP, Hollender J (2014) Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environ Sci Technol 48:2097–2098. doi: 10.1021/es5002105 CrossRefGoogle Scholar
  29. Shah AD, Mitch WA (2012) Halonitroalkanes, halonitriles, haloamides, and N-nitrosamines: a critical review of nitrogenous disinfection byproduct formation pathways. Environ Sci Technol 46:119–131. doi: 10.1021/es203312s CrossRefGoogle Scholar
  30. SZW (2016) SZW lijst van kankerverwekkende, mutagene en voor de voortplanting giftige stoffen, Ministerie van Sociale Zaken en Werkgelegenheid. Staatscourant 43Google Scholar
  31. TERA (Toxicology Excellence for Risk Assessment) (2010) International Toxicity Estimates for Risk (ITER) Database. Online. Available at:
  32. Umbuzeiro Gde A, Roubicek DA, Rech CM, Sato MI, Claxton LD (2004) Investigating the sources of the mutagenic activity found in a river using the salmonella assay and different water extraction procedures. Chemosphere 54:1589–1597CrossRefGoogle Scholar
  33. United States Environmental Protection Agency Integrated Risk Information System (IRIS) (2016) Available at:
  34. Wolf S, Schmidt S, Müller-Hannemann M, Neumann S (2010) In silico fragmentation for computer assisted identification of metabolite mass spectra. BMC Bioinf 11 doi: 10.1186/1471-2105-11-148
  35. Yang W, Zhou H, Cicek N (2013) Treatment of organic micropollutants in water and wastewater by UV-based processes: a literature review. Crit Rev Environ Sci Technol 44:1443–1476. doi: 10.1080/10643389.2013.790745 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D. Vughs
    • 1
  • K. A. Baken
    • 1
    Email author
  • A. Kolkman
    • 1
  • A. J. Martijn
    • 2
  • P. de Voogt
    • 1
    • 3
  1. 1.KWR Watercycle Research InstituteNieuwegeinThe Netherlands
  2. 2.PWN Water Supply Company North HollandVelserbroekThe Netherlands
  3. 3.Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations