Skip to main content
Log in

New insight into monitoring degradation products during the TiO2-photocatalysis process by multivariate molecular spectroscopy

  • AOPs: Recent Advances to Overcome Barriers in the Treatment of Water, Wastewater and Air
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

This study focuses on the feasibility of a spectroscopic multivariate method for monitoring the concentration of phenol and its main degradation products during heterogeneous photocatalysis. Phenolic compounds were chosen as model to evaluate the degradation process due to their toxicity and persistence in the environment and also their well-known degradation pathway. The predictive capability of the multivariate method developed by partial least squares regression (PLSR) over the spectral range of 200–350 nm was satisfactory, allowing mean predicted errors below 5.0 % in the simultaneous determination of the target compounds using six latent variables and smoothing spectra. Suitable results were reported for the simultaneous determination of hydroquinone, resorcinol, pyrocatechol, and p-benzoquinone in accordance to the chromatographic method. Characteristics such as simplicity, low cost, and fast data acquisition are remarkable in this procedure, which makes it appropriate for this type of analytical control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abbas O, Rebufa C, Dupuy N, Kister J (2008) FTIR—multivariate curve resolution monitoring of photo-Fenton degradation of phenolic aqueous solutions: comparison with HPLC as a reference method. Talanta 77:200–209. doi:10.1016/j.talanta.2008.06.008

    Article  CAS  Google Scholar 

  • Bosco MV, Garrido M, Larrechi MS (2006) Determination of phenol in the presence of its principal degradation products in water during a TiO2-photocatalytic degradation process by three-dimensional excitation–emission matrix fluorescence and parallel factor analysis. Anal Chim Acta 559:240–247. doi:10.1016/j.aca.2005.12.001

    Article  CAS  Google Scholar 

  • Calza P, Sakkas VA, Villioti A, Massolino C, Boti V, Pelizzetti E, Albanis T (2008) Multivariate experimental design for the photocatalytic degradation of imipramine: determination of the reaction pathway and identification of intermediate products. Appl Catal B Environ 84:379–388. doi:10.1016/j.apcatb.2008.04.015

    Article  CAS  Google Scholar 

  • Cesarino I, Moraes FC, Ferreira TCR, Lanza MRV, Machado SAS (2012) Real-time electrochemical determination of phenolic compounds after benzene oxidation. J Electroanal Chem 672:34–39. doi:10.1016/j.jelechem.2012.03.006

    Article  CAS  Google Scholar 

  • Emilio CA, Magallanes JF, Litter MI (2007) Chemometric study on the TiO2-photocatalytic degradation of nitriloacetic acid. Anal Chim Acta 595:89–97. doi:10.1016/j.aca.2007.04.010

    Article  CAS  Google Scholar 

  • Ferreira MMC, Antunes AM, Melgo MS, Volpe PLO (1999) Quimiometria I: Calibração multivariada um tutorial. Quim Nov. 22:724–731. doi:10.1590/S0100-40421999000500016

  • Fujishima A, Rao TN, Tryk DA (2000) Titanium dioxide photocatalysis. J Photochem Photobiol C: Photochem Rev 1:1–20. doi:10.1016/S1389-5567(00)00002-2

    Article  CAS  Google Scholar 

  • Grabowska E, Reszczyńska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46:5453–5471. doi:10.1016/j.watres.2012.07.048

    Article  CAS  Google Scholar 

  • Guo Z, Ma R, Li G (2006) Degradation of phenol by nanomaterials TiO2 in wastewater. Chem Eng J 119:55–59. doi:10.1016/j.cej.2006.01.017

    Article  CAS  Google Scholar 

  • Haaland DM, Thomas EV (1988) Partial least-squares methods for sprectral analyses. 1. Relation to other quantitative calibration methods and the extraction of qualitative information. Anal Chem 60:1193–1200. doi:10.1021/ac00162a020

    Article  CAS  Google Scholar 

  • Konstantinou IK, Albanis TA (2003) Photocatalytic transformation of pesticides in aqueous titanium dioxide suspensions using artificial and solar light: intermediates and degradation pathways. Appl Catal B Environ 42:319–335. doi:10.1016/S0926-3373(02)00266-7

    Article  CAS  Google Scholar 

  • Kumar N, Bansal A, Sarna GS, Rawal RK (2014) Chemometrics tools used in analytical chemistry: an overview. Talanta 123:186–199. doi:10.1016/j.talanta.2014.02.003

    Article  CAS  Google Scholar 

  • Ling H, Kim K, Liu Z, Shi J, Zhu X, Huang J (2015) Photocatalytic degradation of phenol in water on as-prepared and surface modified TiO2 nanoparticles. Catal Today 258:96–102. doi:10.1016/j.cattod.2015.03.048

    Article  CAS  Google Scholar 

  • Liu S, Kokot S, Will G (2009) Photochemistry and chemometrics—an overview. J Photochem Photobiol C: Photochem Rev 10:159–172. doi:10.1016/j.jphotochemrev.2010.01.001

    Article  CAS  Google Scholar 

  • López-Doval JC, Meirelles ST, Cardoso-Silva S, Moschini-Carlos V, Pompêo M (2016) Ecological and toxicological responses in a multistressor scenario: are monitoring programs showing the stressors or just showing stress? A case study in Brazil. Sci Total Environ 540:466–476. doi:10.1016/j.scitotenv.2015.05.085

    Article  Google Scholar 

  • Mas S, de Juan A, Tauler R, Olivieri AC, Escandar GM (2010) Applications of chemometric methods to environmental analysis of organic pollutants: a review. Talanta 80:1052–1067. doi:10.1016/j.talanta.2009.09.044

    Article  CAS  Google Scholar 

  • Minella M, Marchetti G, Laurentiis E, Malandrino M, Maurino V, Minero C, Vione D, Hanna K (2014) Photo-Fenton oxidation of phenol with magnetite as iron source. Appl Catal B Environ 154-155:102–109. doi:10.1016/j.apcatb.2014.02.006

    Article  CAS  Google Scholar 

  • Moussavi G, Khavanin A, Alizadeh R (2009) The investigation of catalytic ozonation and integrated catalytic ozonation/biological process for the removal of phenol from saline wastewaters. J Hazard Mater 171:175–181. doi:10.1016/j.jhazmat.2009.05.113

    Article  CAS  Google Scholar 

  • Peiró AM, Ayllón JA, Peral J, Doménech X (2001) TiO2-photocatalyzed degradation of phenol and ortho-substituted phenolic compounds. Appl Catal B Environ 30:359–373. doi:10.1016/S0926-3373(00)00248-4

    Article  Google Scholar 

  • Pimentel M, Oturan N, Dezotti M, Oturan MA (2008) Phenol degradation by advanced electrochemical oxidation process electro-Fenton using a carbon felt cathode. Appl Catal B Environ 83:140–149. doi:10.1016/j.apcatb.2008.02.011

    Article  CAS  Google Scholar 

  • Platikanov S, Rodriguez-Monaz S, Huerta B, Barceló D, Cros J, Batle M, Poch G, Tauler R (2014) Chemometrics quality assessment of wastewater treatment plant effluents using physicochemical parameters and UV absorption measurements. J Environ Manag 140:33–44. doi:10.1016/j.jenvman.2014.03.006

    Article  CAS  Google Scholar 

  • Rodrigues GD, Lemos LR, Silva LHM, Silva MCH, Minim LA, Coimbra JSR (2010) A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system. Talanta 80:1139–1144. doi:10.1016/j.talanta.2009.08.039

    Article  CAS  Google Scholar 

  • Segura Y, Martínez F, Melero JA, Molina R, Chand R, Bremner DH (2012) Enhancement of the advanced Fenton process (Fe0/H2O2) by ultrasound for the mineralization of phenol. Appl Catal B Environ 113-114:100–106. doi:10.1016/j.apcatb.2011.11.024

    Article  CAS  Google Scholar 

  • Sobczyński A, Duczmal Ł, Zmudziński W (2004) Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. J Mol Catal A Chem 213:225–230. doi:10.1016/j.molcata.2003.12.006

    Article  Google Scholar 

  • Szymanska E, Gerretzen J, Engel J, Geurts B, Blanchet L, Buydens LMC (2015) Chemometrics and qualitative analysis have a vibrant relationship. TrAC Trends Anal Chem 69:34–51. doi:10.1016/j.trac.2015.02.015

    Article  CAS  Google Scholar 

  • Tao Y, Cheng ZL, Ting KE, Yin XJ (2013) Photocatalytic degradation of phenol using a nanocatalyst: the mechanism and kinetics. J Catal 2013:1–6. doi:10.1155/2013/364275

    Article  Google Scholar 

  • Tian M, Wu G, Adams B, Wen J, Chen A (2008) Kinetics of photoelectrocatalytic degradation of nitrophenols on nanostructured TiO2 electrodes. J Phys Chem 112:825–831. doi:10.1021/jp077191d

    CAS  Google Scholar 

  • Wang Z, Cai W, Hong X, Zhao X, Xu F, Cai C (2005) Photocatalytic degradation of phenol in aqueous nitrogen-doped TiO2 suspensions with various light sources. Appl Catal B Environ 57:223–231. doi:10.1016/j.apcatb.2004.11.008

    Article  CAS  Google Scholar 

  • Yehia AM, Mohamed HM (2016) Chemometrics resolution and quantification power evaluation: application on pharmaceutical quaternary mixture of Paracetamol, Guaifenesin, Phenylephrine and p-aminophenol. Spectrochim Acta A 152:491–500. doi:10.1016/j.saa.2015.07.101

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Universidade Federal do Paraná (UFPR), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Fundação Araucária, and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for financial support and scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Stets.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stets, S., do Amaral, B., Bach, L. et al. New insight into monitoring degradation products during the TiO2-photocatalysis process by multivariate molecular spectroscopy. Environ Sci Pollut Res 24, 6040–6046 (2017). https://doi.org/10.1007/s11356-016-7232-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7232-x

Keywords

Navigation