Skip to main content
Log in

Thermal and spectral characterization of anaerobic thermal behavior patterns in a lacustrine sediment core

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The thermal evolution of sedimentary organic matter is a significant mechanism in continental oil and gas formation. This study presents a new method to estimate vertical thermal evolution trends in a lake sediment core. Twenty sediment samples from a 60-cm core recovered from Lake Bosten were heated to 600 °C at a rate of 10 °C min−1 under a N2 atmosphere. The sediments were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and then, the samples were analyzed with total organic carbon (TOC) analyses, X-ray diffraction, and 137Cs isotopic dating techniques. Two main anaerobic thermal degradation processes were observed in the thermograms. The pyrolysis results showed variations with sediment age, with labile carbon (237.2 ± 42.98 °C) manifesting different thermogram patterns than recalcitrant carbon (498.35 ± 30.09 °C). There was a significant linear correlation between sample weight loss and TOC (r = 0.972, p < 0.001), as well as between the DSC and TGA peaks (r = 0.963, p < 0.001). As a conclusion, the thermal stability of both labile organic carbon and recalcitrant organic carbon in lacustrine sediment core increased gradually with age. These results confirm that advanced thermal techniques (DSC and TGA) operated in inert gas are potential quantitative methods to characterize the anaerobic thermal behavior of sediment organic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexis MA, Rumpel C, Knicker H, Leifeld J, Rasse D, Péchot N, Bardoux G, Mariotti A (2010) Thermal alteration of organic matter during a shrubland fire: a field study. Org Geochem 41:690–697

    Article  CAS  Google Scholar 

  • Aquino AJ, Tunega D, Pašalić H, Schaumann GE, Haberhauer G, Gerzabek MH, Lischka H (2011) Molecular dynamics simulations of water molecule-bridges in polar domains of humic acids. Environ Sci Technol 45:8411–8419

    Article  CAS  Google Scholar 

  • Bai Y, Wu F, Liu C, Guo J, Fu P, Li W, Xing B (2008) Interaction between carbamazepine and humic substances: a fluorescence spectroscopy study. Environ Toxicol Chem 27:95–102

    Article  CAS  Google Scholar 

  • Baldock JA, Skjemstad J (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710

    Article  CAS  Google Scholar 

  • Barros N, Salgado J, Villanueva M, Rodriquez-Añón J, Proupin J, Feijóo S, Martín-Pastor M (2010) Application of DSC-TG and NMR to study the soil organic matter. J Therm Anal Calorim 104:53–60

    Article  Google Scholar 

  • Baudin F, Disnar J-R, Aboussou A, Savignac F (2015) Guidelines for Rock–Eval analysis of recent marine sediments. Org Geochem 86:71–80

    Article  CAS  Google Scholar 

  • Carrie J, Sanei H, Stern G (2012) Standardisation of Rock–Eval pyrolysis for the analysis of recent sediments and soils. Org Geochem 46:38–53

    Article  CAS  Google Scholar 

  • Cheng H, Hu E, Hu Y (2012) Impact of mineral micropores on transport and fate of organic contaminants: a review. J Contam Hydrol 129:80–90

    Article  Google Scholar 

  • Czimczik CI, Preston CM, Schmidt MW, Werner RA, Schulze E-D (2002) Effects of charring on mass, organic carbon, and stable carbon isotope composition of wood. Org Geochem 33:1207–1223

    Article  CAS  Google Scholar 

  • De la Rosa JM, González-Pérez JA, González-Vázquez R, Knicker H, López-Capel E, Manning DAC, González-Vila FJ (2008) Use of pyrolysis/GC-MS combined with thermal analysis to monitor C and N changes in soil organic matter from a Mediterranean fire affected forest. CATENA 74:296–303

    Article  Google Scholar 

  • DeLapp RC, LeBoeuf EJ, Bell KD (2004) Thermodynamic properties of several soil-and sediment-derived natural organic materials. Chemosphere 54:527–539

    Article  CAS  Google Scholar 

  • DeLapp RC, LeBoeuf EJ, Chen J, Gu B (2005) Advanced thermal characterization of fractionated natural organic matter. J Environ Qual 34:842–853

    Article  CAS  Google Scholar 

  • Dell’Abate MT, Benedetti A, Brookes PC (2003) Hyphenated techniques of thermal analysis for characterisation of soil humic substances. J Sep Sci 26:433–440

    Article  Google Scholar 

  • Dou S, Zhang J, Li K (2008) Effect of organic matter applications on 13C-NMR spectra of humic acids of soil. Eur J Soil Sci 59:532–539

    Article  CAS  Google Scholar 

  • Esteves VI, Duarte AC (1999) Thermogravimetric properties of aquatic humic substances. Mar Chem 63:225–233

    Article  CAS  Google Scholar 

  • Findoráková L, Šestinová O, Danková Z, Findorák R, Hančuľák J (2015) Thermal and spectral characterization of bottom sediment from the water reservoir Ružín No. I in Eastern Slovakia and the kinetics of heavy metal cation leaching. J Soils Sediments 15:1781–1788

    Article  Google Scholar 

  • Flaig W, Beutelspacher H, Rietz E (1975): Chemical composition and physical properties of humic substances, soil components. Springer, Berlin Heidelberg, pp. 1–211

  • Gusterhuber J, Hinsch R, Sachsenhofer RF (2014) Evaluation of hydrocarbon generation and migration in the Molasse fold and thrust belt (Central Eastern Alps, Austria) using structural and thermal basin models. AAPG Bull 98:253–277

  • Hatzinger PB, Alexander M (1997) Biodegradation of organic compounds sequestered in organic solids or in nanopores within silica particles. Environ Toxicol Chem 16:2215–2221

    Article  CAS  Google Scholar 

  • Jia P, Zhang M, Hu L, Zhou J, Feng G, Zhou Y (2015) Thermal degradation behavior and flame retardant mechanism of poly (vinyl chloride) plasticized with a soybean-oil-based plasticizer containing phosphaphenanthrene groups. Polym Degrad Stab 121:292–302

    Article  CAS  Google Scholar 

  • Jiang F, Zhang YL, Du JG (1996) Advance of pyrolysis experimentation on hydrocarbon genesis. Adv Earth Sci 11:453–459 (in Chinese)

    Google Scholar 

  • Kroeger K, Plaza-Faverola A, Barnes P, Pecher I (2015) Thermal evolution of the New Zealand Hikurangi subduction margin: impact on natural gas generation and methane hydrate formation—a model study. Mar Petrol Geol 63:97–114

    Article  CAS  Google Scholar 

  • Leinweber P, Schulten H-R (1999) Advances in analytical pyrolysis of soil organic matter. J Anal Appl Pyrolysis 49:359–383

    Article  CAS  Google Scholar 

  • Leinweber P, Schulten H-R, Horte C (1992) Differential thermal analysis, thermogravimetry and pyrolysis-field ionisation mass spectrometry of soil organic matter in particle-size fractions and bulk soil samples. Thermochim Acta 194:175–187

    Article  CAS  Google Scholar 

  • Liao H, Bu W, Zheng J, Wu F, Yamada M (2014) Vertical distributions of radionuclides (239+ 240Pu, 240Pu/239Pu, and 137Cs) in sediment cores of Lake Bosten in Northwestern China. Environ Sci Technol 48:3840–3846

    Article  CAS  Google Scholar 

  • Lopez-Capel E, Sohi SP, Gaunt JL, Manning DA (2005) Use of thermogravimetry-differential scanning calorimetry to characterize modelable soil organic matter fractions. Soil Sci Soc Am J 69:136–140

    Article  CAS  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66

    Article  CAS  Google Scholar 

  • Marwani H, Lowry M, Xing B, Warner I, Cook R (2009) Frequency-domain fluorescence lifetime measurements via frequency segmentation and recombination as applied to pyrene with dissolved humic materials. J Fluoresc 19:41–51

    Article  CAS  Google Scholar 

  • Moni C, Rumpel C, Virto I, Chabbi A, Chenu C (2010) Relative importance of sorption versus aggregation for organic matter storage in subsoil horizons of two contrasting soils. Eur J Soil Sci 61:958–969

    Article  CAS  Google Scholar 

  • Oudghiri F, García-Morales JL, Rodríguez-Barroso MR (2015) Novel use of TGA–FTIR technique to predict the pollution degree in marine sediments. Infrared Phys Technol 72:52–57

    Article  CAS  Google Scholar 

  • Outridge P, Sanei H, Stern G, Hamilton P, Goodarzi F (2007) Evidence for control of mercury accumulation rates in Canadian high arctic lake sediments by variations of aquatic primary productivity. Environ Sci Technol 41:5259–5265

    Article  CAS  Google Scholar 

  • Pietro M, Paola C (2004) Thermal analysis for the evaluation of the organic matter evolution during municipal solid waste aerobic composting process. Thermochim Acta 413:209–214

    Article  CAS  Google Scholar 

  • Rumpel C, Kögel-Knabner I, Bruhn F (2002) Vertical distribution, age, and chemical composition of organic carbon in two forest soils of different pedogenesis. Org Geochem 33:1131–1142

    Article  CAS  Google Scholar 

  • Sanei H, Stasiuk L, Goodarzi F (2005) Petrological changes occurring in organic matter from recent lacustrine sediments during thermal alteration by Rock-Eval pyrolysis. Org Geochem 36:1190–1203

    Article  CAS  Google Scholar 

  • Schaumann G, Bertmer M (2008) Do water molecules bridge soil organic matter molecule segments? Eur J Soil Sci 59:423–429

    Article  CAS  Google Scholar 

  • Schaumann G, Kunhi Mouvenchery Y (2012) Potential of AFM–nanothermal analysis to study the microscale thermal characteristics in soils and natural organic matter (NOM). J Soils Sediments 12:48–62

    Article  Google Scholar 

  • Schaumann G, LeBoeuf EJ (2005) Glass transitions in peat: their relevance and the impact of water. Environ Sci Technol 39:800–806

    Article  CAS  Google Scholar 

  • Schaumann G, Thiele-Bruhn S (2011) Reprint of: molecular modeling of soil organic matter: squaring the circle? Geoderma 169:55–68

    Article  Google Scholar 

  • Sebag D, Debret M, M’voubou M, Obame RM, Ngomanda A, Oslisly R, Bentaleb I, Disnar J-R, Giresse P (2013) Coupled Rock-Eval pyrolysis and spectrophotometry for lacustrine sedimentary dynamics: Application for West Central African rainforests (Kamalete and Nguene lakes, Gabon). The Holocene 23:1173–1183

    Article  Google Scholar 

  • Smidt E, Tintner J (2007) Application of differential scanning calorimetry (DSC) to evaluate the quality of compost organic matter. Thermochim Acta 459:87–93

    Article  CAS  Google Scholar 

  • Snowdon L, Powell T (1982) Immature oil and condensate--modification of hydrocarbon generation model for terrestrial organic matter. AAPG Bull 66:775–788

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence

    Book  Google Scholar 

  • Vittori Antisari L, Dell’Abate MT, Buscaroli A, Gherardi M, Nisini L, Vianello G (2010) Role of soil organic matter characteristics in a pedological survey: “Bosco Frattona” natural reserve (site of community importance, Italy) case study. Geoderma 156:302–315

    Article  CAS  Google Scholar 

  • Vuong T, Heitkamp F, Jungkunst H, Reimer A, Gerold G (2013) Simultaneous measurement of soil organic and inorganic carbon: evaluation of a thermal gradient analysis. J Soils Sediments 13:1133–1140

    Article  CAS  Google Scholar 

  • Wattel‐Koekkoek E, Buurman P, Van Der Plicht J, Wattel E, Van Breemen N (2003) Mean residence time of soil organic matter associated with kaolinite and smectite. Eur J Soil Sci 54:269–278

    Article  Google Scholar 

  • Williams EK, Rosenheim BE, McNichol AP, Masiello CA (2014) Charring and non-additive chemical reactions during ramped pyrolysis: applications to the characterization of sedimentary and soil organic material. Org Geochem 77:106–114

    Article  CAS  Google Scholar 

  • Wu F, Xu L, Liao H, Guo F, Zhao X, Giesy JP (2013) Relationship between mercury and organic carbon in sediment cores from Lakes Qinghai and Chenghai, China. J Soils Sediments 13:1084–1092

    Article  CAS  Google Scholar 

  • Young KD, LeBoeuf EJ (2000) Glass transition behavior in a peat humic acid and an aquatic fulvic acid. Environ Sci Technol 34:4549–4553

    Article  CAS  Google Scholar 

  • Zhang L, LeBoeuf EJ, Xing B (2007) Thermal analytical investigation of biopolymers and humic- and carbonaceous-based soil and sediment organic matter. Environ Sci Technol 41:4888–4894

    Article  CAS  Google Scholar 

  • Zhang R, Wu F, Liu C, Fu P, Li W, Wang L, Liao H, Guo J (2008) Characteristics of organic phosphorus fractions in different trophic sediments of lakes from the middle and lower reaches of Yangtze River region and Southwestern Plateau, China. Environ Pollut 152:366–372

    Article  CAS  Google Scholar 

  • Zhang YM, Jia LT, Mei H, Cui Q, Zhang PG, Sun ZM (2016) Fabrication, microstructure and properties of bricks fired from lake sediment, cinder and sewage sludge. Constr Build Mater 121:154–160

    Article  Google Scholar 

  • Zou C, Zhai G, Zhang G, Wang H, Zhang G, Li J, Wang Z, Wen Z, Ma F, Liang Y (2015) Formation, distribution, potential and prediction of global conventional and unconventional hydrocarbon resources. Pet Explor Dev 42:10–17

    Google Scholar 

Download references

Acknowledgments

The present study was supported by the National Natural Science Foundation of China (Nos. 41573124 and 21507120) and the National Water Pollution Control and Management Technology Major Projects of China (2012ZX07503-003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingchen Bai.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Mu, Y., Chen, C. et al. Thermal and spectral characterization of anaerobic thermal behavior patterns in a lacustrine sediment core. Environ Sci Pollut Res 23, 19949–19957 (2016). https://doi.org/10.1007/s11356-016-7215-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7215-y

Keywords