Skip to main content
Log in

Phthalate pollution in an Amazonian rainforest

  • Short Research and Discussion Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Phthalates are ubiquitous contaminants and endocrine-disrupting chemicals that can become trapped in the cuticles of insects, including ants which were recognized as good bioindicators for such pollution. Because phthalates have been noted in developed countries and because they also have been found in the Arctic, a region isolated from direct anthropogenic influence, we hypothesized that they are widespread. So, we looked for their presence on the cuticle of ants gathered from isolated areas of the Amazonian rainforest and along an anthropogenic gradient of pollution (rainforest vs. road sides vs. cities in French Guiana). Phthalate pollution (mainly di(2-ethylhexyl) phthalate (DEHP)) was higher on ants gathered in cities and along road sides than on those collected in the pristine rainforest, indicating that it follows a human-mediated gradient of disturbance related to the use of plastics and many other products that contain phthalates in urban zones. Their presence varied with the ant species; the cuticle of Solenopsis saevissima traps higher amount of phthalates than that of compared species. However, the presence of phthalates in isolated areas of pristine rainforests suggests that they are associated both with atmospheric particles and in gaseous form and are transported over long distances by wind, resulting in a worldwide diffusion. These findings suggest that there is no such thing as a “pristine” zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Abe Y, Yamaguchi M, Mutsuga M, Hirahara Y, Kawamura Y (2012) Survey of plasticizers in polyvinyl chloride toys. Food Hyg Safe Sci 53:19–27

    Article  CAS  Google Scholar 

  • Ait Bamai Y, Shibata E, Saito I, Araki A, Kanazawa A, Morimoto K, Nakayama K, Tanaka M, Takigawa T, Yoshimura T, et al. (2014) Exposure to house dust phthalates in relation to asthma and allergies in both children and adults. Sci Total Environ 485–486:153–163

    Article  Google Scholar 

  • Alves C, Oliveira T, Pio C, Silvestre AJD, Fialho P, Barata F, Legrand M (2007) Characterisation of carbonaceous aerosols from the Azorean Island of Terceira. Atmos Environ 41:1359–1373

    Article  CAS  Google Scholar 

  • Babich MA, Osterhout CA (2010) Toxicity review of diisononyl phthalate (DINP). Bethesda, MD, p. 154 http://www.cpsc.gov/about/cpsia/toxicityDINP.pdf

    Google Scholar 

  • Barušić L, Galić A, Bošnir J, Baričević L, Mandić-Andačić I, Krivohlavek A, Mojsović Ćuić A, Đikić D (2015) Phthalate in children’s toys and childcare articles in Croatia. Curr Sci 109:1480–1486

    Google Scholar 

  • Basset Y, Cizek L, Cuénoud P, Didham RK, Novotny V, Ødegaard F, Roslin T, Tishechkin AK, Schmidl J, Winchester NN, et al. (2015) Arthropod distribution in a tropical rainforest: tackling a four dimensional puzzle. PLoS One 10:e0144110

    Article  Google Scholar 

  • Blanchard M, Teil M-J, Dargnat C, Alliot F, Chevreuil M (2013) Assessment of adult human exposure to phthalate esters in the urban Centre of Paris (France). Bull Environ Contam Toxicol 90:91–96

    Article  Google Scholar 

  • Blanchard O, Glorennec P, Mercier F, Bonvallot N, Chevrier C, Ramalho O, Mandin C, Le Bot B (2014) Semivolatile organic compounds in indoor air and settled dust in 30 French dwellings. Environ Sci Technol 48:3959–3969

    Article  CAS  Google Scholar 

  • Cao X-L (2008) Determination of phthalates and adipate in bottled water by headspace solid-phase microextraction and gas chromatography/mass spectrometry. J Chromato A 1178:231–238

    Article  CAS  Google Scholar 

  • Cavill GWK, Houghton E (1974) Volatile constituents of the Argentine ant, Iridomyrmex humilis. J Insect Physiol 20:2049–2059

    Article  CAS  Google Scholar 

  • Cecinato A, Balducci C, Mastroianni D, Perilli M (2012) Sampling and analytical methods for assessing the levels of organic pollutants in the atmosphere: PAH, phthalates and psychotropic substances: a short review. Environ Sci Pollut Res 19:1915–1926

    Article  CAS  Google Scholar 

  • Choi JK, Heo JB, Ban SJ, Yi SM, Zoh KD (2012) Chemical characteristics of PM2.5 aerosol in Incheon, Korea. Atmos Environ 60:583–592

    Article  CAS  Google Scholar 

  • Cuvillier-Hot V, Salin K, Devers S, Tasiemski A, Schaffner P, Boulay R, Lenoir A (2014) Impact of ecological doses of the most widespread phthalate on a terrestrial species, the ant Lasius niger. Environ Res 131:104–110

    Article  CAS  Google Scholar 

  • Dejean A, Céréghino R, Leponce M, Rossi V, Roux O, Compin A, Delabie JHC, Corbara B (2015) The fire ant Solenopsis saevissima and habitat disturbance alter ant communities. Biol Conserv 187:145–153

    Article  Google Scholar 

  • Desdoits-Lethimonier C, Albert O, Le Bizec B, Perdu E, Zalko D, Courant F, Lesné L, Guillé F, Dejucq-Rainsford N, Jégou B (2012) Human testis steroidogenesis is inhibited by phthalates. Hum Reprod 27:1451–1459

    Article  CAS  Google Scholar 

  • Dirzo R, Young HS, Galetti M, Ceballos G, Isaac NJB, Collen B (2014) Defaunation in the Anthropocene. Science 345:401–406

    Article  CAS  Google Scholar 

  • Doyle TJ, Bowman JL, Windell VL, McLean DJ, Kim KH (2013) Transgenerational effects of di-(2-ethylhexyl) phthalate on testicular germ cell associations and spermatogonial stem cells in mice. Biol Reprod 88:111–115

    Article  Google Scholar 

  • Gao D-W, Wen Z-D (2016) Phthalate esters in the environment: a critical review of their occurrence, biodegradation, and removal during wastewater treatment processes. Sci Total Environ 541:986–1001

    Article  CAS  Google Scholar 

  • Gaudin R, Marsan P, Ndaw S, Robert A, Ducos P (2011) Biological monitoring of exposure to di(2-ethylhexyl) phthalate in six French factories: a field study. Int Arch Occup Environ Health 84:523–531

    Article  CAS  Google Scholar 

  • Gill RJ, Ramos-Rodriguez O, Raine NE (2012) Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–108

    Article  CAS  Google Scholar 

  • Gómez-Ramos MM, García-Valcárcel AI, Tadeo JL, Fernández-Alba AR, Hernando MD (2016) Screening of environmental contaminants in honey bee wax comb using gas chromatography–high-resolution time-of-flight mass spectrometry. Environ Sci Pollut Res 23:4609–4620

    Article  Google Scholar 

  • Holmstrup M, Bindesbøl A-M, Oostingh GJ, Duschl A, Scheil V, Köhler H-R, Loureiro S, Soares AMVM, Ferreira ALG, Kienle C, et al. (2010) Interactions between effects of environmental chemicals and natural stressors: a review. Sci Total Environ 408:3746–3762

    Article  CAS  Google Scholar 

  • Huang J, Nkrumah PN, Li Y, Appiah-Sefah G (2013) Chemical behavior of phthalates under abiotic conditions in landfills. Rev Environ Contam Toxicol 224:39–52

    CAS  Google Scholar 

  • Jensen J, van Langevelde J, Pritzl G, Krogh PH (2001) Effects of di(2-ethylhexyl) phthalate and dibutyl phthalate on the collembolan Folsomia fimetaria. Environ Toxicol Chem 20:1085–1091

    Article  CAS  Google Scholar 

  • Kampa M, Castanas E (2008) Human health effects of air pollution. Environ Pollut 151:362–367

    Article  CAS  Google Scholar 

  • Kather R, Drijfhout F, Martin S (2011) Task group differences in cuticular lipids in the honey bee Apis mellifera. J Chem Ecol 37:205–212

    Article  CAS  Google Scholar 

  • Kristensen TN, Pertoldi C, Pedersen LD, Andersen DH, Bach LA, Loeschcke V (2004) The increase of fluctuating asymmetry in a monoclonal strain of collembolans after chemical exposure-discussing a new method for estimating the environmental variance. Ecol Indic 4:73–81

    Article  CAS  Google Scholar 

  • Lenoir A, Cuvillier-Hot V, Devers S, Christidès J-P, Montigny F (2012) Ant cuticles: a trap for atmospheric phthalate contaminants. Sci Total Environ 441:209–212

    Article  CAS  Google Scholar 

  • Lenoir A, Devers S, Touchard A, Dejean A (2016) The Guianese population of the fire ant Solenopsis saevissima is unicolonial. Insect Sci doi:10.1111/1744-7917.12232

    Google Scholar 

  • Lenoir A, Touchard A, Devers S, Christides J-P, Boulay R, Cuvillier-Hot V (2014) Ant cuticular response to phthalate pollution. Environ Sci Pollut Res 21:13446–13451

    Article  CAS  Google Scholar 

  • Longino JT, Branstetter MG, Colwell RK (2014) How ants drop out: ant abundance on tropical mountains. PLoS One 9:e104030

    Article  Google Scholar 

  • Manikkam M, Tracey R, Guerrero-Bosagna C, Skinner MK (2013) Plastics derived endocrine disruptors (BPA, DEHP and DBP) induce epigenetic transgenerational inheritance of obesity, reproductive disease and sperm epimutations. PLoS One 8:e55387

    Article  CAS  Google Scholar 

  • Manzetti S, van der Spoel ER, van der Spoel D (2014) Chemical properties, environmental fate, and degradation of seven classes of pollutants. Chem Res Toxicol 27:713–737

    Article  CAS  Google Scholar 

  • Martin JM, Roux O, Groc S, Dejean A (2011) A type of unicoloniality within the native range of the fire ant Solenopsis saevissima. C R Biol 334:307–310

    Article  Google Scholar 

  • Rastogi SC (1998) Gas chromatographic analysis of the phthalate esters in plastic toys. Chromatographia 47:724–726

    Article  CAS  Google Scholar 

  • Rhind SM (2009) Anthropogenic pollutants: a threat to ecosystem sustainability? Philos Trans R Soc Lond B 364:3391–3401

    Article  CAS  Google Scholar 

  • Rissman EF, Adli M (2014) Transgenerational epigenetic inheritance: focus on endocrine disrupting compounds. Endocrinology 155:2770–2780

    Article  Google Scholar 

  • Saillenfait A-M, Laudet-Hesbert A (2005a) Phtalates. EMC-Toxicol Pathol 2:1–13

    Article  Google Scholar 

  • Saillenfait A-M, Laudet-Hesbert A (2005b) Phtalates (II). EMC-Toxicol Pathol 2:137–150

    Article  Google Scholar 

  • Salapasidou M, Samara C, Voutsa D (2011) Endocrine disrupting compounds in the atmosphere of the urban area of Thessaloniki, Greece. Atmos Environ 45:3720–3729

    Article  CAS  Google Scholar 

  • Saravanabhavan, GMJ (2012) Human biological monitoring of diisononyl phthalate and diisodecyl phthalate: a review. J Environ Pub Health 2012:ID 810501

  • Schwindt AR, Winkelman DL, Keteles K,  Murphy M, Vajda AM (2014) An environmental oestrogen disrupts fish population dynamics through direct and transgenerational effects on survival and fecundity. J Appl Ecol 51:582–591. doi:10.1111/1365-2664.12237

  • Staples CA, Peterson DR, Parkerton TF, Adams WJ (1997) The environmental fate of phthalate esters: a literature review. Chemosphere 35:667–749

    Article  CAS  Google Scholar 

  • Teil M-J, Blanchard M, Chevreuil M (2006) Atmospheric fate of phthalate esters in an urban area (Paris, France). Sci Total Environ 354:212–223

    Article  CAS  Google Scholar 

  • Teil M-J, Moreau-Guigon E, Blanchard M, Alliot F, Gasperi J, Cladière M, Mandin C, Moukhtar S, Chevreuil M (2016) Endocrine disrupting compounds in gaseous and particulate outdoor air phases according to environmental factors. Chemosphere 146:94–104

    Article  CAS  Google Scholar 

  • Tomar RS, Budroe JD, Cendak R (2013) Evidence on the carcinogenicity of the diisononyl phthalate (DINP). California Environmental Protection Agency. http://oehha.ca.gov/prop65/hazard_ident/pdf_zip/DINP_HID100413.pdf

  • Valton AS, Serre-Dargnat C, Blanchard M, Alliot F, Chevreuil M, Teil M (2014) Determination of phthalates and their by-products in tissues of roach (Rutilus rutilus) from the Orge river (France). Environ Sci Pollut Res 21:12723–12730

    Article  CAS  Google Scholar 

  • Vidau C, Diogon M, Aufauvre J, Fontbonne R, Viguès B, Brunet J-L, Texier C, Biron DG, Blot N, El Alaoui H, et al. (2011) Exposure to sublethal doses of fipronil and thiacloprid highly increases mortality of honeybees previously infected by Nosema ceranae. PLoS One 6:e21550

    Article  CAS  Google Scholar 

  • Vienne C, Soroker V, Hefetz A (1995) Congruency of hydrocarbon patterns in heterospecific groups of ants: transfer and/or biosynthesis? Insect Soc 42:267–277

    Article  Google Scholar 

  • Williams BJ, Goldstein AH, Kreisberg NM, Hering SV (2010) In situ measurements of gas/particle-phase transitions for atmospheric semivolatile organic compounds. Proc Natl Acad Sc 107:6676–6681

    Article  CAS  Google Scholar 

  • Xie ZY, Ebinghaus R, Temme C, Caba A, Ruck W (2005) Atmospheric concentrations and air–sea exchanges of phthalates in the North Sea (German bight). Atmos Environ 39:3209–3219

    Article  CAS  Google Scholar 

  • Xie ZY, Ebinghaus R, Temme C, Lohmann R, Caba A, Ruck W (2007) Occurrence and air-sea exchange of phthalates in the arctic. Environ Sci Technol 41:4555–4560

    Article  CAS  Google Scholar 

  • Yuan S-Y, Huang IC, Chang B-V (2010) Biodegradation of dibutyl phthalate and di-(2-ethylhexyl) phthalate and microbial community changes in mangrove sediment. J Hazard Mater 184:826–831

    Article  CAS  Google Scholar 

  • Zhou QH, Wu ZB, Cheng SP, He F, Fu GP (2005) Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biol Biochem 37:1454–1459

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided by a CNRS/Centre d’Études de la Biodiversité Amazonienne (CEBA) project entitled “Phthalate pollution in an Amazonian rainforest” (PPAR). We are grateful to Chloé Fasilleau and Chloé Moyse (École Polytechnique, Université de Tours, France) for the analysis of the data, to Jessica Pearce-Duvet and Andrea Yockey-Dejean for proofreading the manuscript, and to Jacques H. C. Delabie (Laboratório de Mirmecologia, CRC, Ilhéus, Bahia, Brazil) for the identification of the ants. We would like to thank the staff of the CNRS Nouragues research station and the Laboratoire Environnement de Petit-Saut for furnishing logistical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Lenoir.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interest.

Additional information

Editorial Responsible: Constantini Samara

Electronic supplementary material

Below is the link to the electronic supplementary material.

Suppl 1

(JPEG 4.40 mb)

Suppl 2

(JPEG 4.02 mb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lenoir, A., Boulay, R., Dejean, A. et al. Phthalate pollution in an Amazonian rainforest. Environ Sci Pollut Res 23, 16865–16872 (2016). https://doi.org/10.1007/s11356-016-7141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7141-z

Keywords

Navigation