Skip to main content
Log in

Photodegradation of the novel fungicide fluopyram in aqueous solution: kinetics, transformation products, and toxicity evolvement

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The aqueous photodegradation of fluopyram was investigated under UV light (λ ≥ 200 nm) and simulated sunlight irradiation (λ ≥ 290 nm). The effect of solution pH, fulvic acids (FA), nitrate (NO3 ), Fe (III) ions, and titanium dioxide (TiO2) on direct photolysis of fluopyram was explored. The results showed that fluopyram photodegradation was faster in neutral solution than that in acidic and alkaline solutions. The presence of FA, NO3 , Fe (III), and TiO2 slightly affected the photodegradation of fluopyram under UV irradiation, whereas the photodegradation rates of fluopyram with 5 mg L−1 Fe (III) and 500 mg L−1 TiO2 were about 7-fold and 13-fold faster than that without Fe (III) and TiO2 under simulated sunlight irradiation, respectively. Three typical products for direct photolysis of fluopyram have been isolated and characterized by liquid chromatography tandem mass spectrometry. These products resulted from the intramolecular elimination of HCl, hydroxyl-substitution, and hydrogen extraction. Based on the identified transformation products and evolution profile, a plausible degradation pathway for the direct photolysis of fluopyram in aqueous solution was proposed. In addition, acute toxicity assays using the Vibrio fischeri bacteria test indicated that the transformation products were more toxic than the parent compound.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abellán MN, Bayarri B, Giménez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B-Environ 74(3-4):233–41

    Article  Google Scholar 

  • Abramović BF, Banić ND, Šojić DV (2010) Degradation of thiacloprid in aqueous solution by UV and UV/H2O2 treatments. Chemosphere 81(1):114–9

    Article  Google Scholar 

  • Abramović BF, Despotović VN, Šojić DV, Orčić DZ, Csanádi JJ, Četojević-Simin DD (2013) Photocatalytic degradation of the herbicide clomazone in natural water using TiO2: Kinetics, mechanism, and toxicity of degradation products. Chemosphere 93(1):166–71

    Article  Google Scholar 

  • Antonopoulou M, Konstantinou I (2014) Photocatalytic treatment of metribuzin herbicide over TiO2 aqueous suspensions: removal efficiency, identification of transformation products, reaction pathways and ecotoxicity evaluation. J Photoch Photobio A 294:110–20

    Article  CAS  Google Scholar 

  • Avenot HF, Michailides TJ (2010) Progress in understanding molecular mechanisms and evolution of resistance to succinate dehydrogenase inhibiting (SDHI) fungicides in phytopathogenic fungi. Crop Prot 29:643–51

    Article  CAS  Google Scholar 

  • Avetta P, Marchetti G, Minella M, Pazzi M, Laurentiis E, Maurino V, Minero C, Vione D (2014) Phototransformation pathways of the fungicide dimethomorph ((E, Z)4-[3-(4-chlorophenyl)-3-(3,4-dimethoxyphenyl)-1-oxo-2-propenyl] morpholine), relevant to sunlit surface waters. Sci Total Environ 500–501:351–60

    Article  Google Scholar 

  • Canle LM, Fernández MI, Santaballa JA (2005) Developments in the mechanism of photodegradation of triazine-based pesticides. J Phys Org Chem 18(2):148–55

    Article  Google Scholar 

  • Cao G, Lu J, Wang G (2012) Photolysis kinetics and influencing factors of bisphenol S in aqueous solutions. J Environ Sci 24(5):846–51

    Article  CAS  Google Scholar 

  • Chen Y, Zhang K, Zuo YG (2013) Direct and indirect photodegradation of estriol in the presence of humic acid, nitrate and iron complexes in water solutions. Sci Total Environ 463(5):802–9

    Article  Google Scholar 

  • Conceição M, Mateus DA, Silva AM, Burrows HD (1994) Environmental and laboratory studies of the photodegradation of the pesticide fenarimol. J Photoch Photobio A 80(1-3):409–16

    Article  Google Scholar 

  • De Miccolis Angelini RM, Masiello M, Rotolo C, Pollastro S, Faretra F (2014) Molecular characterisation and detection of resistance to succinate dehydrogenase inhibitor fungicides in Botryotinia fuckeliana (Botrytis cinerea). Pest Manag Sci 70(12):1884–93

    Article  Google Scholar 

  • Doll TE, Frimmel FH (2005) Photocatalytic degradation of carbamazepine, clofibric acid and iomeprol with P25 and Hombikat UV100 in the presence of natural organic matter (NOM) and other organic water constituents. Water Res 39:403–11

    Article  CAS  Google Scholar 

  • Dong BZ, Hu JY (2014) Dissipation and residue determination of fluopyram and tebuconazole residues in watermelon and soil by GC-MS. Int J Environ An Ch 94(5):493–505

    Article  CAS  Google Scholar 

  • Escher BI, Fenner K (2011) Recent advances in environmental risk assessment of transformation products. Environ Sci Technol 45(9):3835–47

    Article  CAS  Google Scholar 

  • Espinoza LAT, Neamtu M, Frimmel FH (2007) The effect of nitrate, Fe(III) and bicarbonate on the degradation of bisphenol A by simulated solar UV irradiation. Water Res 41:4479–87

    Article  Google Scholar 

  • European Food Safety Authority (2011) Setting of new MRLs and import tolerances for fluopyram in various crops. EFSA J 9(9):2388

    Article  Google Scholar 

  • Farré MJ, Doménech X, Peral J (2007) Combined photo-Fenton and biological treatment for Diuron and Linuron removal from water containing humic acid. J Hazard Mater 147(1-2):167–74

    Article  Google Scholar 

  • Filipe OMS, Santos SAO, Domingues MRM, Vidal MM, Silvestre AJD, Neto CP, Santos EBH (2013) Photodegradation of the fungicide thiram in aqueous solutions. Kinetic studies and identification of the photodegradation products by HPLC-MS/MS. Chemosphere 91:993–1001

    Article  CAS  Google Scholar 

  • Fisher JM, Reese JG, Pellechia PJ, Moeller PL, Ferry JL (2006) Role of Fe(III), phosphate, dissolved organic matter, and nitrate during the photodegradation of domoic acid in the marine environment. Environ Sci Technol 40:2200–5

    Article  CAS  Google Scholar 

  • Grabowska E, Reszczynska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46(17):5453–71

    Article  CAS  Google Scholar 

  • Guan WB, Ma Y, Zhang HY (2012) Residue and dissipation dynamics of fluopyram in cucumber and soil. Adv Mater Res 347–353:2255–9

    Google Scholar 

  • Health Canada Pest Management Regulatory Agency (2014) Evaluation report- ERC 2014-02: fluopyram. 2-7

  • Hoff RB, Meneghini L, Pizzolato TM, Peralba MC, Díaz-Cruz MS, Barceló D (2014) Structural elucidation of sulfaquinoxaline metabolism products and their occurrence in biological samples using high-resolution Orbitrap mass spectrometry. Anal Chem 86(11):5579–86

    Article  CAS  Google Scholar 

  • Ishii H, Miyamoto T, Ushio S, Kakishima M (2011) Lack of cross-resistance to a novel succinate dehydrogenase inhibitor, fluopyram, in highly boscalid-resistant isolates of Corynespora cassiicola and Podosphaera xanthii. Pest Manag Sci 67(4):474–82

    Article  CAS  Google Scholar 

  • Jiao S, Zheng S, Yin D, Wang L, Chen L (2008) Aqueous photolysis of tetracycline and toxicity of photolytic products to luminescent bacteria. Chemosphere 73:377–82

    Article  CAS  Google Scholar 

  • Kim T, Kim J, Choi K, Stenstrom MK, Zoh K (2006) Degradation mechanism and the toxicity assessment in TiO2 photocatalysis and photolysis of parathion. Chemosphere 62(6):926–33

    Article  CAS  Google Scholar 

  • Kumar V, Upadhay N, Wasit AB, Singh S (2013) Spectroscopic methods for the detection of organophosphate pesticides—a preview. Current World Environ 8(2):313–8

    Article  CAS  Google Scholar 

  • Lavtizăr V, van Gestel CAM, Dolenc D, Trebše P (2014) Chemical and photochemical degradation of chlorantraniliprole and characterization of its transformation products. Chemosphere 95:408–14

    Article  Google Scholar 

  • Labourdette G, Lachaise H, Rieck H, Steiger D (2010) Fluopyram: a new antifungal agent for the control of problematic plant diseases of many crops. Julius-Kühn-Arch 428:91–2

    Google Scholar 

  • Lambropoulou DA, Konstantinou IK, Albanis TA, Fernández-Alba AR (2011) Photocatalytic degradation of the fungicide fenhexamid in aqueous TiO2 suspensions: identification of intermediates products and reaction pathways. Chemosphere 83(3):367–78

    Article  CAS  Google Scholar 

  • Li Y, Niu JF, Wang WL (2011) Photolysis of Enrofloxacin in aqueous systems under simulated sunlight irradiation: kinetics, mechanism and toxicity of photolysis products. Chemosphere 85(5):892–7

    Article  CAS  Google Scholar 

  • Liu P, Xu Y, Li J, Liu J, Cao Y, Liu X (2012) Photodegradation of the isoxazolidine fungicide SYP-Z048 in aqueous solution: kinetics and photoproducts. J Agric Food Chem 60(47):11657–63

    Article  CAS  Google Scholar 

  • Liu N, Sijak S, Zheng M, Tang L, Xu G, Wu M (2015) Aquatic photolysis of florfenicol and thiamphenicol under direct UV irradiation, UV/H2O2, and UV/Fe (II) processes. Chem Eng J 260:826–34

    Article  CAS  Google Scholar 

  • Liu W, Chen SF, Zhao W, Zhang SJ (2009) Titanium dioxide mediated photocatalytic degradation of methamidophos in aqueous phase. J Hazard Mater 164(1):154–60

    Article  Google Scholar 

  • Liu Y, Lan XF, Gao XM, Shen ZH, Lu J, Ni XW (2002) Study of acetic acid spectral characteristics. Applied Laser 22(6):559–62, In Chinese

    Google Scholar 

  • Mao L, Meng C, Zeng C, Ji YF, Yang X, Gao SX (2011) The effect of nitrate, bicarbonate and natural organic matter on the degradation of sunscreen agent p-aminobenzoic acid by simulated solar irradiation. Sci Total Environ 409(24):5376–81

    Article  CAS  Google Scholar 

  • Martínez-Zapata M, Aristizábal C, Peñuela G (2013) Photodegradation of the endocrine-disrupting chemicals 4 n -nonylphenol and triclosan by simulated solar UV irradiation in aqueous solutions with Fe(III) and in the absence/presence of humic acids. J Photoch Photobiolo A 251(9):41–9

    Article  Google Scholar 

  • Martínez Vidal JL, Plaza-Bolaños P, Romero-González R, Garrido FA (2009) Determination of pesticide transformation products: a review of extraction and detection methods. J Chromatogr A 1216:6767–88

    Article  Google Scholar 

  • Meng F-J, Ni Z-L, Wu C-J (2002) Nitrate concentrations in drinking water. Foreign Medcbtm Sci (Section of Medgeography) 23(3):115–6 (In Chinese)

    Google Scholar 

  • Niu J, Zhang L, Li Y, Zhao J, Lv S, Xiao K (2013) Effects of environmental factors on sulfamethoxazole photodegradation under simulated sunlight irradiation: kinetics and mechanism. J Environ Sci 25(6):1098–106

    Article  CAS  Google Scholar 

  • Pinna MV, Pusino A (2012) Direct and indirect photolysis of two quinolinecarboxylic herbicides in aqueous systems. Chemosphere 86(6):655–8

    Article  CAS  Google Scholar 

  • Robert D, Malato S (2002) Solar photocatalysis: a clean process for water detoxification. Sci Total Environ 291:85–97

    Article  CAS  Google Scholar 

  • Sanches S, Crespo MT, Pereira VJ (2010) Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Res 44(6):1809–18

    Article  CAS  Google Scholar 

  • Sandín-España P, Sevilla-Morán B, Calvo L, Mateo-Miranda M, Alonso-Prados JL (2013) Photochemical behavior of alloxydim herbicide in environmental waters. Structural elucidation and toxicity of degradation products. Microchem J 106:212–9

    Article  Google Scholar 

  • Sevilla-Morán B, López-Goti C, Alonso-Prados JL, Sandín-España P (2014) Aqueous photodegradation of sethoxydim herbicide: Qtof elucidation of its by-products, mechanism and degradation pathway. Sci Total Environ 472:842–50

    Article  Google Scholar 

  • Shi X, Zhang R, Zhang H, Xu F, Zhang Q, Wang W (2015) Influence of water on the homogeneous gas-phase formation mechanism of polyhalogenated dioxins/furans from chlorinated/brominated phenols as precursors. Chemosphere 137:142–8

    Article  CAS  Google Scholar 

  • Sinclair CJ (2009) Predicting the environmental fate and ecotoxicological and toxicological effects of pesticide transformation products. Dissertation, University of York

  • Sinclair CJ, Boxall ABA (2003) Assessing the ecotoxicity of pesticide transformation products. Environ Sci Technol 37:4617–25

    Article  CAS  Google Scholar 

  • Tan C, Gao N, Zhou S, Zhuang Z (2014) Kinetic study of acetaminophen degradation by UV-based advanced oxidation processes. Chem Eng J 253(7):229–36

    Article  CAS  Google Scholar 

  • Tong L, Eichhorn P, Pérez S, Wang Y, Barceló D (2011) Photodegradation of azithromycin in various aqueous systems under simulated and natural solar radiation: kinetics and identification of photoproducts. Chemosphere 83:340–8

    Article  CAS  Google Scholar 

  • Torrents A, Anderson BG, Bilboulian S, Johnson WE, Hapeman CJ (1997) Atrazine photolysis: mechanistic investigations of direct and nitrate-mediated hydroxy radical processes and the influence of dissolved organic carbon from the chesapeake bay. Environ Sci Technol 31(5):1476–82

    Article  CAS  Google Scholar 

  • USEPA (2008) Fate, transport and transformation test guidelines. OPPTS 835.2120, Hydrolysis. EPA 712-C-08-012

  • Veloukas T, Karaoglanidis GS (2012) Biological activity of the succinatedehydrogenase inhibitor fluopyram against Botrytis cinerea and fungal baseline sensitivity. Pest Manag Sci 68(6):85–864

    Article  Google Scholar 

  • Wang J, Zhou T, Mao J, Wu X (2015) Comparative study of sulfamethazine degradation in visible light induced photo-Fenton and photo-Fenton-like systems. J Environ Chemical Eng 3(1):2393–400

    Article  CAS  Google Scholar 

  • Wang L, Zhang CB, Wu F, Deng NS, Glebov EM, Bazhin NM (2006) Determination of hydroxyl radicals from photolysis of Fe(III)-pyruvate complexes in homogeneous aqueous solution. React Kinet Catal L 89(1):183–92

    Article  CAS  Google Scholar 

  • Wu F, Deng NS (2000) Photochemistry of hydrolytic iron (III) species and photoinduced degradation of organic compounds. A mini review. Chemosphere 41:1137–47

    Article  CAS  Google Scholar 

  • Xia XH, Li GC, Yang ZF, Chen YM, Huang GH (2009) Effects of fulvic acid concentration and origin on photodegradation of polycyclic aromatic hydrocarbons in aqueous solution: importance of active oxygen. Environ Pollut 157(4):1352–9

    Article  CAS  Google Scholar 

  • Xie JM, Wang PL, Liu J, Lv XM, Jiang DL, Sun C (2011) Photodegradation of lambda-cyhalothrin and cypermethrin in aqueous solution as affected by humic acid and/or copper: intermediates and degradation pathways. Environ Toxicol Chem 30(11):2440–8

    Article  CAS  Google Scholar 

  • Xu J, Hao Z, Guo C, Zhang Y, He Y, Meng W (2014) Photodegradation of sulfapyridine under simulated sunlight irradiation: kinetics, mechanism and toxicity evolvement. Chemosphere 99(3):186–91

    Article  CAS  Google Scholar 

  • Yan G, Sun H, Sun W, Zhao L, Meng X, Wang X (2010) Rapid and global detection and characterization of aconitum alkaloids in Yin Chen Si Ni Tang, a traditional Chinese medical formula, by ultra performance liquid chromatography-high resolution mass spectrometry and automated data analysis. J Pharmaceut Biomed 53:421–31

    Article  CAS  Google Scholar 

  • Yang Y, Yin XJ, Guo HM, Wang RL, Song R, Tian Y, Zhang ZJ (2014) Identification and comparative analysis of the major chemical constituents in the extracts of single Fuzi herb and Fuzi-Gancao herb-pair by UFLC-IT-TOF/MS. Chin J Nat Med 12(7):542–53

    Google Scholar 

  • Zhang Y, Xu J, Dong FS, Liu XG, Wu XH, Zheng YQ (2014) Response of microbial community to a new fungicide fluopyram in the silty-loam agricultural soil. Ecotox Environ Safe 108:273–80

    Article  CAS  Google Scholar 

  • Zhou JH (2006) The application of the high content of iron ions in groundwater for boiler feed water. China Special Equipment Safety 22(1):37–8 (In Chinese)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiye Hu.

Additional information

Responsible editor: Roland Kallenborn

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 384 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, B., Hu, J. Photodegradation of the novel fungicide fluopyram in aqueous solution: kinetics, transformation products, and toxicity evolvement. Environ Sci Pollut Res 23, 19096–19106 (2016). https://doi.org/10.1007/s11356-016-7073-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7073-7

Keywords

Profiles

  1. Bizhang Dong