Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 7, pp 6382–6389 | Cite as

Coated mesh photocatalytic reactor for air treatment applications: comparative study of support materials

  • Claudio Passalía
  • Emanuel Nocetti
  • Orlando Alfano
  • Rodolfo BrandiEmail author
AOPs: Recent Advances to Overcome Barriers in the Treatment of Water, Wastewater and Air

Abstract

An experimental comparative study of different meshes as support materials for photocatalytic applications in gas phase is presented. The photocatalytic oxidation of dichloromethane in air was addressed employing different coated meshes in a laboratory-scale, continuous reactor. Two fiberglass meshes and a stainless steel mesh were studied regarding the catalyst load, adherence, and catalytic activity. Titanium dioxide photocatalyst was immobilized on the meshes by dip-coating cycles. Results indicate the feasibility of the dichloromethane elimination in the three cases. When the number of coating cycles was doubled, the achieved conversion levels were increased twofold for stainless steel and threefold for the fiberglass meshes. One of the fiberglass meshes (FG2) showed the highest reactivity per mass of catalyst and per catalytic surface area.

Keywords

Indoor pollution Heterogeneous photocatalysis Dichloromethane Mesh reactor Efficiency 

Notes

Acknowledgments

The authors are grateful to the Universidad Nacional del Litoral (UNL), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), and Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT) of Argentina for the financial support. The technical assistance of Antonio C. Negro is also acknowledged.

References

  1. Abu Bakar W, Ali R, Othman M (2010) Photocatalytic degradation and reaction pathway studies of chlorinated hydrocarbons in gaseous phase. Trans C Chem Chem Eng 17(1):1–14Google Scholar
  2. Boonen E, Beeldens A (2014) Recent photocatalytic applications for air purification in Belgium. Coatings 4:553–573CrossRefGoogle Scholar
  3. Borisch J, Pilkenton S, Miller M, Raftery D, Francisco J (2004) TiO2 photocatalytic degradation of dichloromethane: an FTIR and solid-state NMR study. J Phys Chem B 108:5640–5646CrossRefGoogle Scholar
  4. Chang C, Lee Y, Lin C, Lee J, Chang Y, Chen J (2010) Degradation of volatile acetone by a photocatalytic reactor with TiO2 coated sieve Adv. Mater Res 123-125:919–922Google Scholar
  5. Esterkin CR, Negro A, Alfano O, Cassano A (2005) Air pollution remediation in a fixed bed photocatalytic reactor coated with TiO2. AICHE J 51(8):2298–2310. doi: 10.1002/aic.10472 CrossRefGoogle Scholar
  6. Hodgson AT, Destaillats H, Sullivan DP, Fisk WJ (2007) Performance of ultraviolet photocatalytic oxidation for indoor air cleaning applications. Indoor Air 17:305–316CrossRefGoogle Scholar
  7. Jones A (1999) Indoor air quality and health. Atmos Environ 33:4535–4564CrossRefGoogle Scholar
  8. Kolb B, Ettre L (1997) Static headspace-gas chromatography. Theory and practice. Whiley-VCH, New YorkGoogle Scholar
  9. Kowalska J, Szewczyńska M, Pośniak M (2015) Measurements of chlorinated volatile organic compounds emitted from office printers and photocopiers. Environ Sci Pollut Res 22:5241–5252CrossRefGoogle Scholar
  10. Lewandowski M, Ollis D (2003) A two-site kinetic model simulating apparent deactivation during photocatalytic oxidation of aromatics on titanium dioxide (TiO2). Appl Catal B 43:309–327CrossRefGoogle Scholar
  11. Martínez LM, Sanz O, Domínguez MI, Centeno MA, Odriozola JA (2009) AISI 304 Austenitic stainless steels monoliths for catalytic applications. Chem Eng J 148(1):191–200Google Scholar
  12. Nero AV Jr (1988) Controlling indoor air pollution. Sci Am 258(5):42–48CrossRefGoogle Scholar
  13. Ochiai T, Niitsu Y, Kobayashi G, Kurano M, Serizawa I, Horio K, Nakata K, Murakami T, Morito Y, Fujishima A (2011) Compact and effective photocatalytic air-purification unit by using of mercury-free excimer lamps with TiO2 coated titanium mesh filter. Catal Sci Technol 1:1328–1330CrossRefGoogle Scholar
  14. Ohtani B, Prieto-Mahaney O, Li D, Abe R (2010) What is Degussa (Evonik) P25? Crystalline composition analysis, reconstruction from isolated pure particles and photocatalytic activity test. J Photochem Photobiol A 216(2–3):179–182CrossRefGoogle Scholar
  15. Passalía C, Martinez Retamar E, Alfano O, Brandi R (2010) Photocatalytic degradation of formaldehyde in gas phase on TiO2 films: a kinetic study. Int J Chem React Eng 8(A161). doi:10.2202/1542–6580.2494Google Scholar
  16. Taranto J, Frochot D, Pichat P (2009) Photocatalytic air purification: comparative efficacy and pressure drop of a TiO2-coated thin mesh and a honeycomb monolith at high air velocities using a 0.4 m3 close-loop reactor. Sep Purif Technol 67:187–193CrossRefGoogle Scholar
  17. Tobaldi DM, Pullar R, Seabra M, Labrincha J (2014) Fully quantitative X-ray characterisation of Evonik Aeroxide TiO2 P25®. Mater Lett 122:345–347CrossRefGoogle Scholar
  18. Uberoi M, Pereira C (1996) External mass transfer coefficients for monolith catalysts. Ind Eng Chem Res 35:113–116CrossRefGoogle Scholar
  19. US EPA (2000) Hazard summary for methylene chloride. http://www.epa.gov/airtoxics/hlthef/methylen.html. Accessed 30 May 2016
  20. Yu J, Chen J, Feng L, Jiang Y, Cheng Z (2012) Conversion characteristics and mechanism analysis of gaseous dichloromethane degraded by a VUV light in different reaction media. J Environ Sci 24(10):1777–1784CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Facultad de Ingeniería y Ciencias HídricasUniversidad Nacional del Litoral (FICH-UNL)Santa FeArgentina
  2. 2.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina
  3. 3.Instituto de Desarrollo Tecnológico para la Industria QuímicaINTEC (CONICET-UNL)Santa FeArgentina

Personalised recommendations