Skip to main content

Advertisement

Log in

Estimating internal P loading in a deep water reservoir of northern China using three different methods

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Much attention had been paid to reducing external loading of nutrients to improve water quality, while internal loading from sediment, which has been largely neglected, is also an important source for water eutrophication. The internal load in deep lakes or reservoirs is not easy to be detected and be quantified. In this study, three different methods (mass balance method, Fick’s law, and regression equation) were combined to calculate the gross or/and net P release from sediment using limited data. Our results indicated that (1) the methods of mass balance and regression equation give similar results of sediment P release rate, with values of 0.889 and 0.902 mg m2 d−1, respectively, while the result of Fick’s law was much lower (0.400 mg m2 d−1); (2) Hot periods of sediment releasing were suggested to occur from March to April and from August to September, which correspond to periods of high risks of algae blooms. The remaining months of the year were shown as net nutrient retention; (3) for the whole region, Baihedam and Chaohekuqu were identified as zones with a higher possibility to release P from sediment. (4) P loading to the Miyun Reservoir was greater in the inflow than in the outflow, suggesting a portion of the inflow P load was retained in the water or sediment; hence, release of sediment P may continue to be a major source of phosphorus in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Andersen FØ, Ring P (1999) Comparison of phosphorus release from littoral and profundal sediments in a shallow, eutrophic lake. Hydrobiologia 408:175–183. doi:10.1023/A:1017027818233

    Article  Google Scholar 

  • Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25(4):704–726. doi:10.1007/BF02804901

    Article  Google Scholar 

  • Benndorf J, Boing W, Koop J, Neubauer I (2002) Top-down control of phytoplankton: the role of time scale, lake depth and trophic state. Freshw Biol 47(12):2282–2295. doi:10.1046/j.1365-2427.2002.00989.x

    Article  Google Scholar 

  • Bertrand NG, Marie SJ, Fidèle F, Jean-Marie DD (2015) Speciation of phosphorus in Lake Dang of Ngaoundere-Cameroon. Environ Sci Pollut Res 22(4):3098–3106. doi:10.1007/s11356-014-3586-0

    Article  CAS  Google Scholar 

  • Bhadha JH, Jawitz JW, Min J-H (2011) Phosphorus mass balance and internal load in an impacted subtropical isolated wetland. Water Air Soil Pollut 218(1):619–632. doi:10.1007/s11270-010-0673-9

    Article  CAS  Google Scholar 

  • Boers PCM (1991) The influence of pH on phosphate release from lake sediments. Water Res 25(3):309–311. doi:10.1016/0043-1354(91)90010-N

    Article  CAS  Google Scholar 

  • Boström B, Andersen JM, Fleischer S, Jansson M (1988) Exchange of phosphorus across the sediment-water interface. Hydrobiologia 170(1):229–244. doi:10.1007/BF00024907

    Article  Google Scholar 

  • Burger DF, Hamilton DP, Pilditch CA, Gibbs MM (2007) Benthic nutrient fluxes in a eutrophic, polymictic lake. Hydrobiologia 584(1):13–25. doi:10.1007/s10750-007-0582-0

    Article  CAS  Google Scholar 

  • Carter LD, Dzialowski AR (2012) Predicting sediment phosphorus release rates using landuse and water-quality data. Freshw Sci 31(4):1214–1222. doi:10.1899/11-177.1

    Article  Google Scholar 

  • Carey CC, Rydin E (2011) Lake trophic status can be determined by the depth distribution of sediment phosphorus. Limnol Oceanogr 56(6):2051–2063. doi:10.4319/lo.2011.56.6.2051

    Article  CAS  Google Scholar 

  • Chowdhury M, Bakri DA (2006) Diffusive nutrient flux at the sediment–water interface in Suma Park reservoir, Australia. Hydrol Sci J 51(1):144–156. doi:10.1623/hysj.51.1.144

    Article  CAS  Google Scholar 

  • Conley DJ, Paerl HW, Howarth RW, Boesch DF, Seitzinger SP, Havens KE, Lancelot C, Likens GE (2009) Controlling eutrophication: nitrogen and phosphorus. Science 323(5917):1014–1015. doi:10.1126/science.1167755

    Article  CAS  Google Scholar 

  • Cook PLM, Holland DP, Longmore AR (2010) Effect of a flood event on the dynamics of phytoplankton and biogeochemistry in a large temperate Australian lagoon. Limnol Oceanogr 55(3):1123–1133. doi:10.4319/lo.2010.55.3.1123

    Article  CAS  Google Scholar 

  • Cornwell JC, Glibert PM, Owens MS (2014) Nutrient fluxes from sediments in the San Francisco Bay Delta. Estuar Coasts 37(5):1120–1133. doi:10.1007/s12237-013-9755-4

    Article  CAS  Google Scholar 

  • Ding S, Han C, Wang Y, Yao L, Wang Y, Xu D, Sun Q, Williams PN, Zhang C (2015) In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Water Res 74:100–109. doi:10.1016/j.watres.2015.02.008

    Article  CAS  Google Scholar 

  • Du X, Li X, Zhang W, Wang H (2014) Variations in source apportionments of nutrient load among seasons and hydrological years in a semi-arid watershed: GWLF model results. Environ Sci Pollut Res 21(10):6506–6515. doi:10.1007/s11356-014-2519-2

    Article  CAS  Google Scholar 

  • Graca B, Witek Z, Burska D, Białkowska I, Łukawska-Matuszewska K, Bolałek J (2006) Pore water phosphate and ammonia below the permanent halocline in the South-Eastern Baltic Sea and their benthic fluxes under anoxic conditions. J Mar Syst 63(3):141–154. doi:10.1016/j.jmarsys.2006.06.003

    Article  Google Scholar 

  • Granéli W (1999) Internal phosphorus loading in Lake Ringsjon. Hydrobiologia 404:19–26. doi:10.1023/a:1003705520085

    Article  Google Scholar 

  • Greene S, McElarney Y, Taylor D (2015) Water quality effects following establishment of the invasive Dreissena polymorpha (Pallas) in a shallow eutrophic lake: implications for pollution mitigation measures. Hydrobiologia 743(1):237–253. doi:10.1007/s10750-014-2041-z

    Article  CAS  Google Scholar 

  • Gudimov A, O’Connor E, Dittrich M, Jarjanazi H, Palmer ME, Stainsby E, Winter JG, Young JD, Arhonditsis GB (2012) Continuous Bayesian network for studying the causal links between phosphorus loading and plankton patterns in Lake Simcoe, Ontario, Canada. Environ Sci Technol 46(13):7283–7292. doi:10.1021/es300983r

    Article  CAS  Google Scholar 

  • Haggard B, Moore P, DeLaune P (2005) Phosphorus flux from bottom sediments in Lake Eucha, Oklahoma. J Environ Qual 34(2):724–728. doi:10.2134/jeq2005.0724

    Article  CAS  Google Scholar 

  • Han C, Ding S, Yao L, Shen Q, Zhu C, Wang Y, Xu D (2015) Dynamics of phosphorus–iron–sulfur at the sediment–water interface influenced by algae blooms decomposition. J Hazard Mater 300:329–337. doi:10.1016/j.jhazmat.2015.07.009

    Article  CAS  Google Scholar 

  • Hansen AM, Márquez-Pacheco H (2015) Internal phosphorus load in a Mexican reservoir: forecast and validation. Environ Toxicol Chem 34(11):2583–2589. doi:10.1002/etc.3102

    Article  CAS  Google Scholar 

  • Hickey CW, Gibbs MM (2009) Lake sediment phosphorus release management—decision support and risk assessment framework. N Z J Mar Freshw Res 43(3):819–856. doi:10.1080/00288330909510043

    Article  CAS  Google Scholar 

  • Hupfer M, Lewandowski J (2008) Oxygen controls the phosphorus release from lake sediments—a long-lasting paradigm in limnology. Int Rev Hydrobiol 93(4–5):415–432. doi:10.1002/iroh.200711054

    Article  CAS  Google Scholar 

  • James WF, Barko JW (1991) Littoral-pelagic phosphorus dynamics during nighttime convective circulation. Limnol Oceanogr 36(5):949–960. doi:10.4319/lo.1991.36.5.0949

    Article  CAS  Google Scholar 

  • Jeppesen E et al. (2005) Lake responses to reduced nutrient loading—an analysis of contemporary long-term data from 35 case studies. Freshw Biol 50(10):1747–1771. doi:10.1111/j.1365-2427.2005.01415.x

    Article  CAS  Google Scholar 

  • Jeppesen E, Søndergaard M, Meerhoff M, Lauridsen TL, Jensen JP (2007) Shallow lake restoration by nutrient loading reduction—some recent findings and challenges ahead. Hydrobiologia 584(1):239–252. doi:10.1007/s10750-007-0596-7

    Article  CAS  Google Scholar 

  • Kelderman P, Wei Z, Maessen M (2005) Water and mass budgets for estimating phosphorus sediment–water exchange in Lake Taihu (China PR). Hydrobiologia 544(1):167–175. doi:10.1007/s10750-005-0542-5

    Article  CAS  Google Scholar 

  • Kisand A, Nõges P (2003) Sediment phosphorus release in phytoplankton dominated versus macrophyte dominated shallow lakes: importance of oxygen conditions. Hydrobiologia 506(1):129–133. doi:10.1023/B:HYDR.0000008620.87704.3b

    Article  Google Scholar 

  • Koiv T, Noges T, Laas A (2011) Phosphorus retention as a function of external loading, hydraulic turnover time, area and relative depth in 54 lakes and reservoirs. Hydrobiologia 660(1):105–115. doi:10.1007/s10750-010-0411-8

    Article  CAS  Google Scholar 

  • Koriyama M, Hayami Y, Koga A, Yamamoto K, Isnasetyo A, Hamada T, Yoshino K, Katano T, Yamaguchi S (2013) Seasonal variations of water column nutrients in the inner area of Ariake Bay, Japan: the role of muddy sediments. Environ Monit Assess 185(8):6831–6846. doi:10.1007/s10661-013-3068-8

    Article  CAS  Google Scholar 

  • Kowalczewska-Madura K, Goldyn R, Dondajewska R (2010) The bottom sediments of Lake Uzarzewskie—a phosphorus source or sink? Oceanol Hydrobiol Stud 39(3):81–91. doi:10.2478/v10009-010-0042-4

    CAS  Google Scholar 

  • Kowalczewska-Madura K, Gołdyn R, Dera M (2015) Spatial and seasonal changes of phosphorus internal loading in two lakes with different trophy. Ecol Eng 74:187–195. doi:10.1016/j.ecoleng.2014.10.033

    Article  Google Scholar 

  • Lavery PS, Oldham CE, Ghisalberti M (2001) The use of Fick’s first law for predicting porewater nutrient fluxes under diffusive conditions. Hydrol Process 15(13):2435–2451. doi:10.1002/hyp.297

    Article  Google Scholar 

  • Lehtoranta J, Ekholm P, Pitkänen H (2009) Coastal eutrophication thresholds: a matter of sediment microbial processes. Ambio 38(6):303–308. doi:10.1579/09-A-656.1

    Article  CAS  Google Scholar 

  • Lewis GN, Auer MT, Xiang X, Penn MR (2007) Modeling phosphorus flux in the sediments of Onondaga Lake: insights on the timing of lake response and recovery. Ecol Model 209(2):121–135. doi:10.1016/j.ecolmodel.2007.06.015

    Article  Google Scholar 

  • Li Z, Zhu D, Chen Y, Fang X, Liu Z, Ma W (2014) Simulating and understanding effects of water level fluctuations on thermal regimes in Miyun Reservoir. Hydrol Sci J. doi:10.1080/02626667.2014.983517

    Google Scholar 

  • Liu X (2002) The study of water eutrophication in Miyun Reservoir. Master Thesis, Capital Normal University

  • Malecki LM, White JR, Reddy K (2004) Nitrogen and phosphorus flux rates from sediment in the lower St. Johns River estuary. J Environ Qual 33(4):1545–1555. doi:10.2134/jeq2004.1545

    Article  CAS  Google Scholar 

  • Mayer T, Rosa F, Charlton M (2005) Effect of sediment geochemistry on the nutrient release rates in Cootes Paradise Marsh, Ontario, Canada. Aquat Ecosyst Health Manag 8(2):133–145. doi:10.1080/14634980590954986

    Article  CAS  Google Scholar 

  • Mayer T, Rosa F, Mayer R, Charlton M (2006) Relationship between the sediment geochemistry and phosphorus fluxes in a Great Lakes coastal marsh, Cootes Paradise, ON, Canada. Water Air Soil Pollut Focus 6(5):495–503. doi:10.1007/s11267-006-9033-6

    Article  CAS  Google Scholar 

  • Nürnberg GK (1985) Availability of phosphorus upwelling from iron-rich anoxic hypolimnia. Arch Hydrobiol 104(4):459–476

    Google Scholar 

  • Nürnberg GK (1988) Prediction of phosphorus release rates from total and reductant-soluble phosphorus in anoxic lake sediments. Can J Fish Aquat Sci 45(3):453–462. doi:10.1139/f88-054

    Article  Google Scholar 

  • Nürnberg GK, LaZerte BD (2004) Modeling the effect of development on internal phosphorus load in nutrient-poor lakes. Water Resour Res 40(1):1–9. doi:10.1029/2003wr002410

    Article  Google Scholar 

  • Nürnberg GK (2009) Assessing internal phosphorus load—problems to be solved. Lake Reserv Manag 25(4):419–432. doi:10.1080/00357520903458848

    Article  Google Scholar 

  • Nürnberg GK, Tarvainen M, Ventelä A-M, Sarvala J (2012) Internal phosphorus load estimation during biomanipulation in a large polymictic and mesotrophic lake. Inland Waters 2(3):147–162. doi:10.5268/IW-2.3.469

    Article  Google Scholar 

  • Nürnberg GK, LaZerte BD, Loh PS, Molot LA (2013) Quantification of internal phosphorus load in large, partially polymictic and mesotrophic Lake Simcoe, Ontario. J Great Lakes Res 39(2):271–279. doi:10.1016/j.jglr.2013.03.017

    Article  Google Scholar 

  • Nürnberg GK, LaZerte BD (2016) More than 20 years of estimated internal phosphorus loading in polymictic, eutrophic Lake Winnipeg, Manitoba. J Great Lakes Res 42(1):18–27. doi:10.1016/j.jglr.2015.11.003

    Article  Google Scholar 

  • Nowlin WH, Evarts JL, Vanni MJ (2005) Release rates and potential fates of nitrogen and phosphorus from sediments in a eutrophic reservoir. Freshw Biol 50(2):301–322. doi:10.1111/j.1365-2427.2004.01316.x

    Article  CAS  Google Scholar 

  • Orihel DM, Hadas O, Pinkas R, Viner-Mozzini Y, Sukenik A (2013) A internal nutrient loading may increase microcystin concentrations in freshwater lakes by promoting growth of Microcystis populations. Ann De Limnol Int J Limnol 3:225–235. doi:10.1051/limn/2013052

    Article  Google Scholar 

  • Pedusaar T, Sammalkorpi I, Hautala A, Salujoe J, Jarvalt A, Pihlak M (2010) Shifts in water quality in a drinking water reservoir during and after the removal of cyprinids. Hydrobiologia 649(1):95–106. doi:10.1007/s10750-010-0231-x

    Article  CAS  Google Scholar 

  • Penn MR, Auer MT, Doerr SM, Driscoll CT, Brooks CM, Effler SW (2000) Seasonality in phosphorus release rates from the sediments of a hypereutrophic lake under a matrix of pH and redox conditions. Can J Fish Aquat Sci 57(5):1033–1041. doi:10.1139/cjfas-57-5-1033

    Article  CAS  Google Scholar 

  • Pollman CD, James RT (2011) A simple model of internal loading of phosphorus in Lake Okeechobee. Lake Reserv Manag 27(1):15–27. doi:10.1080/07438141.2010.542877

    Article  CAS  Google Scholar 

  • Qin LH, Zeng QH, Li XY, Qin YM (2016) Distribution characteristics of organic matter and nutrient content in water-level-fluctuating zone of Miyun Reservoir inner lake. J Lake Sci (in Chinese). doi:10.18307/2016.0401

    Google Scholar 

  • Reddy KR, Conner GAO, Gale PM (1998) Phosphorus sorption capacities of wetland soils and stream sediments impacted by dairy effluent. J Environ Qual 27(2):438–447. doi:10.2134/jeq1998.00472425002700020027x

    Article  CAS  Google Scholar 

  • Ruiz-Fernández A, Hillaire-Marcel C, Ghaleb B, Soto-Jiménez M, Páez-Osuna F (2002) Recent sedimentary history of anthropogenic impacts on the Culiacan River Estuary, northwestern Mexico: geochemical evidence from organic matter and nutrients. Environ Pollut 118(3):365–377. doi:10.1016/S0269-7491(01)00287-1

    Article  Google Scholar 

  • Rzepecki M (2012) Dynamics of phosphorus in lacustrine sediments: the process of uptake/release of dissolved phosphorus by sediments in different habitats and lakes. Pol J Ecol 60(4):717–740

    CAS  Google Scholar 

  • Søndergaard M, Jensen JP, Jeppesen E (2003) Role of sediment and internal loading of phosphorus in shallow lakes. Hydrobiologia 506(1):135–145. doi:10.1023/B:HYDR.0000008611.12704.dd

    Article  Google Scholar 

  • Søndergaard M, Bjerring R, Jeppesen E (2012) Persistent internal phosphorus loading during summer in shallow eutrophic lakes. Hydrobiologia 710(1):95–107. doi:10.1007/s10750-012-1091-3

    Article  Google Scholar 

  • Selig U (2003) Particle size-related phosphate binding and P-release at the sediment–water interface in a shallow German lake. Hydrobiologia 492(1):107–118. doi:10.1023/a:1024865828601

    Article  CAS  Google Scholar 

  • Smith L, Watzin MC, Druschel G (2011) Relating sediment phosphorus mobility to seasonal and diel redox fluctuations at the sediment–water interface in a eutrophic freshwater lake. Limnol Oceanogr 56(6):2251–2264. doi:10.4319/lo.2011.56.6.2251

    Article  CAS  Google Scholar 

  • Soranno P, Carpenter S, Lathrop R (1997) Internal phosphorus loading in Lake Mendota: response to external loads and weather. Can J Fish Aquat Sci 54(8):1883–1893. doi:10.1139/cjfas-54-8-1883

    Article  CAS  Google Scholar 

  • Spears B, Carvalho L, Perkins R, Kirika A, Paterson D (2012) Long-term variation and regulation of internal phosphorus loading in Loch Leven. Hydrobiologia 681(1):23–33. doi:10.1007/s10750-011-0921-z

    Article  CAS  Google Scholar 

  • Steinman A, Rediske R, Reddy KR (2004) The reduction of internal phosphorus loading using alum in Spring Lake, Michigan. J Environ Qual 33(6):2040–2048. doi:10.2134/jeq2004.2040

    Article  CAS  Google Scholar 

  • Steinman A, Chu X, Ogdahl M (2009) Spatial and temporal variability of internal and external phosphorus loads in Mona Lake, Michigan. Aquat Ecol 43(1):1–18. doi:10.1007/s10452-007-9147-6

    Article  CAS  Google Scholar 

  • Su M, Yu J, Pan S, An W, Yang M (2014) Spatial and temporal variations of two cyanobacteria in the mesotrophic Miyun reservoir, China. J Environ Sci 26(2):289–298. doi:10.1016/S1001-0742(13)60433-7

    Article  Google Scholar 

  • Waters S, Webster-Brown J (2016) The use of a mass balance phosphorus budget for informing nutrient management in shallow coastal lakes. J Hydro Environ Res 10:32–49. doi:10.1016/j.jher.2015.11.002

    Article  Google Scholar 

  • Welch EB, Cooke GD (1995) Internal phosphorus loading in shallow lakes: importance and control. Lake Reserv Manag 11(3):273–281. doi:10.1080/07438149509354208

    Article  Google Scholar 

  • Wu YH, Wen YJ, Zhou JX, Wu YY (2014) Phosphorus release from lake sediments: effects of pH, temperature and dissolved oxygen. KSCE J Civ Eng 18(1):323–329. doi:10.1007/s12205-014-0192-0

    Article  Google Scholar 

  • Wu Z, Wang S, He M, Zhang L, Jiao L (2015) Element remobilization,“internal P-loading,” and sediment-P reactivity researched by DGT (diffusive gradients in thin films) technique. Environ Sci Pollut Res 22(20):16173–16183. doi:10.1007/s11356-015-4736-8

    Article  CAS  Google Scholar 

  • Xia X, Wu Q, Zhu B, Zhao P, Zhang S, Yang L (2015) Analyzing the contribution of climate change to long-term variations in sediment nitrogen sources for reservoirs/lakes. Sci Total Environ 523:64–73. doi:10.1016/j.scitotenv.2015.03.140

    Article  CAS  Google Scholar 

  • Yang L, Lei K, Yan W, Li Y (2013) Internal loads of nutrients in Lake Chaohu of China: implications for lake eutrophication. Int J Environ Res 7(4):1021–1028

    CAS  Google Scholar 

  • Yang M, Geng X, Grace J, Jia Y, Liu Y, Jiao S, Shi L, Lu C, Zhou Y, Lei G (2015) Responses of N2O flux to water level fluctuation and other environmental factors at littoral zone of Miyun reservoir: a comparison with CH4 fluxes. Biogeosci Discuss 12(7):5333–5363

    Article  Google Scholar 

  • Yin H, Kong M (2015) Reduction of sediment internal P-loading from eutrophic lakes using thermally modified calcium-rich attapulgite-based thin-layer cap. J Environ Manag 151:178–185. doi:10.1016/j.jenvman.2015.01.003

    Article  CAS  Google Scholar 

  • Zamparas M, Zacharias I (2014) Restoration of eutrophic freshwater by managing internal nutrient loads. A review. Sci Total Environ 496:551–562. doi:10.1016/j.scitotenv.2014.07.076

    Article  CAS  Google Scholar 

  • Zeng Q, Qin L, Li X (2015) The potential impact of an inter-basin water transfer project on nutrients (nitrogen and phosphorous) and chlorophyll a of the receiving water system. Sci Total Environ 536:675–686. doi:10.1016/j.scitotenv.2015.07.042

    Article  CAS  Google Scholar 

  • Zhang L, Wang L, Yin K, Lü Y, Zhang D, Yang Y, Huang X (2013) Pore water nutrient characteristics and the fluxes across the sediment in the Pearl River estuary and adjacent waters, China. Estuar Coast Shelf Sci 133:182–192. doi:10.1016/j.ecss.2013.08.028

    Article  CAS  Google Scholar 

  • Zhou Q, Gibson CE, Zhu Y (2001) Evaluation of phosphorus bioavailability in sediments of three contrasting lakes in China and the UK. Chemosphere 42(2):221–225. doi:10.1016/S0045-6535(00)00129-6

    Article  CAS  Google Scholar 

  • Zhu M, Zhu G, Li W, Zhang Y, Zhao L, Gu Z (2013) Estimation of the algal-available phosphorus pool in sediments of a large, shallow eutrophic lake (Taihu, China) using profiled SMT fractional analysis. Environ Pollut 173:216–223. doi:10.1016/j.envpol.2012.10.016

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by RCEES “One-Three-Five” project (No. YSW2013B02-4) and the Major Science and Technology Program for Water Pollution Control and Treatment in China (No. 2014ZX07203010) and the Special Scientific Research of State Key Laboratory of Urban and Regional Ecology (NO. SKLURE2013-1-05). We would like thank Huimin Fu, Xiaoming Yang, Qian Zhao, and Juan Chen for their supports during the sampling and experiment processes. We would also like to thank Dr. Pei Lei, Dr. Hongtao Zhao and Dr. Yan Jiang for their efforts on improving our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuyong Li.

Additional information

Responsible editor: Hailong Wang

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, L., Zeng, Q., Zhang, W. et al. Estimating internal P loading in a deep water reservoir of northern China using three different methods. Environ Sci Pollut Res 23, 18512–18523 (2016). https://doi.org/10.1007/s11356-016-7035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7035-0

Keywords