Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review

Abstract

Pesticides are used for controlling the development of various pests in agricultural crops worldwide. Despite their agricultural benefits, pesticides are often considered a serious threat to the environment because of their persistent nature and the anomalies they create. Hence removal of such pesticides from the environment is a topic of interest for the researchers nowadays. During the recent years, use of biological resources to degrade or remove pesticides has emerged as a powerful tool for their in situ degradation and remediation. Fungi are among such bioresources that have been widely characterized and applied for biodegradation and bioremediation of pesticides. This review article presents the perspectives of using fungi for biodegradation and bioremediation of pesticides in liquid and soil media. This review clearly indicates that fungal isolates are an effective bioresource to degrade different pesticides including lindane, methamidophos, endosulfan, chlorpyrifos, atrazine, cypermethrin, dieldrin, methyl parathion, heptachlor, etc. However, rate of fungal degradation of pesticides depends on soil moisture content, nutrient availability, pH, temperature, oxygen level, etc. Fungal strains were found to harbor different processes including hydroxylation, demethylation, dechlorination, dioxygenation, esterification, dehydrochlorination, oxidation, etc during the biodegradation of different pesticides having varying functional groups. Moreover, the biodegradation of different pesticides was found to be mediated by involvement of different enzymes including laccase, hydrolase, peroxidase, esterase, dehydrogenase, manganese peroxidase, lignin peroxidase, etc. The recent advances in understanding the fungal biodegradation of pesticides focusing on the processes, pathways, genes/enzymes and factors affecting the biodegradation have also been presented in this review article.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abbot J, Marohasy J (2011) Has the herbicide diuron caused mangrove dieback?:a re-examination of the evidence. Hum Ecol Risk Assess 17:1077–1094

    CAS  Article  Google Scholar 

  2. Abraham J, Silambarasan S (2014) Biomineralization and formulation of endosulfan degrading bacterial and fungal consortiums. Pestic Biochem Physiol 116:24–31

    CAS  Article  Google Scholar 

  3. Adongbede EM, Sanni RO (2014) Biodegradation of engine oil by Agaricus campestris (a white rot fungus). J Bioremed Biodeg 5:262

    Google Scholar 

  4. Allard AS, Remberger M, Neilson AH (1987) Bacterial O-methylation of halogen-substituted phenols. Appl Environ Microbiol 53:839–845

    CAS  Google Scholar 

  5. Alvarenga N, Birolli WG, Seleghim MH, Porto AL (2014) Biodegradation of methyl parathion by whole cells of marine-derived fungi Aspergillus sydowii and Penicillium decaturense. Chemosphere 117:47–52

    CAS  Article  Google Scholar 

  6. Alvarez-Rodriguez ML, López-Ocaña L, López-Coronado JM, Rodríguez E, Martínez MJ, Larriba G, Coque JJR (2002) Cork taint of wines: role of the filamentous fungi isolated from cork in the formation of 2,4,6-trichloroanisole by O-methylation of 2,4,6-trichlorophenol. Appl Environ Microbiol 68:5860–5869

    CAS  Article  Google Scholar 

  7. Anderson SE, Tapp L, Durgam S, Meade BJ, Jackson LG, Cohen DE (2012) The identification of a sensitizing component used in the manufacturing of an ink ribbon. J Immunotoxicol 9:193–200

    CAS  Article  Google Scholar 

  8. Anwar S, Liaquat F, Khan QM, Khalid ZM, Iqbal S (2009) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by Bacillus pumilus strain C2A1. J Hazard Mater 168:400–440

    CAS  Article  Google Scholar 

  9. Arfarita N, Imai T, Kanno A, Higuchi T, Yamamoto K, Sekine M (2011) Screening of soil-born fungi from forest soil using glyphosate herbicide as the sole source of phosphorus. J Water Environ Tech 9(4):391–400

    Article  Google Scholar 

  10. Awasthi N, Singh AK, Jain RK, Khangarot BS (2003) Degradation and detoxification of endosulfan isomers by a defined co-culture of two Bacillus strains. Appl Microbiol Biotechnol 62:279–283

    CAS  Article  Google Scholar 

  11. Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 57:2806–2812

    Article  CAS  Google Scholar 

  12. Bakshi DK, Gupta KG, Sharma P (1999) Enhanced biodecolorization of synthetic textile dye effluent by Phanerochate chrysosporium under improved culture conditions. World J Microbiol Biotechnol 15:507–509

    CAS  Article  Google Scholar 

  13. Barathidasan K, Reetha D, Milton DJ, Sriram N, Govindammal M (2014) Biodegradation of chlorpyrifos by co-culture of Cellulomonas fimi and Phanerochaete chrysosporium. Afr J Microbiol Res 8(9):961–966

    CAS  Article  Google Scholar 

  14. Barriuso E, Koskinen WC (1996) Incorporating non-extractable atrazine residues into soil size fractions as a function of time. Soil Sci Soc Am J 60:150–157

    CAS  Article  Google Scholar 

  15. Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodeterior Biodegrad 63(4):389–394

    CAS  Article  Google Scholar 

  16. Batisson I, Pesce S, Besse-Hoggan P, Sancelme M, Bohatier J (2007) Isolation and characterization of diuron-degrading bacteria from lotic surface water. Microb Ecol 54:761–770

    CAS  Article  Google Scholar 

  17. Bending G, Friloux DM, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    CAS  Article  Google Scholar 

  18. Bhagobaty RK, Joshi SR, Malik A (2007) Microbial degradation of organophosphorous pesticide: chlorpyrifos (mini-review). Int J Microbiol 4(1):1–13

    Google Scholar 

  19. Bhalerao TS (2012) Bioremediation of endosulfan-contaminated soil by using bioaugmentation treatment of fungal inoculant Aspergillus niger. Turk J Biol 36:561–567

    CAS  Google Scholar 

  20. Bhalerao TS, Puranik PR (2007) Biodegradation of organochlorine pesticide, endosulfan, by a fungal soil isolate, Aspergillus niger. Int Biodeterior Biodegrad 59:315–321

    CAS  Article  Google Scholar 

  21. Bhosle NP, Nasreen S (2013) Remediation of cypermethrin-25 EC by microorganisms. Eur J Exp Biol 3(1):144–152

    CAS  Google Scholar 

  22. Boersma FGH, Otten R, Warmink JA, Nazir R, van Elsas JD (2010) Selection of Variovorax paradoxus-like bacteria in the mycosphere and the role of fungal-released compounds. Soil Biol Biochem 42:2137–2145

    CAS  Article  Google Scholar 

  23. Boopathy R (2000) Factors limiting bioremediation technologies. Bioresour Technol 74:63–67

    CAS  Article  Google Scholar 

  24. Boschin G, D'Agostina A, Arnoldi A, Marotta E, Zanardini E, Negri M, Valle A, Sorlini C (2003) Biodegradation of chlorsulfuron and metsulfuron-methyl by Aspergillus niger in laboratory conditions. J Environ Sci Health Part B 38:737–746

    Article  CAS  Google Scholar 

  25. Boul HL (1996) Effects of soil moisture on the fate of radiolabeled DDT and DDE in vitro. Chemosphere 32:855–866

    CAS  Article  Google Scholar 

  26. Bumpus JA, Aust SD (1987) Biodegradation of DDT [1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane] by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 53:2001–2008

    CAS  Google Scholar 

  27. Bumpus JA, Brock BJ (1988) Biodegradation of crystal violet by white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 54:1143–1150

    CAS  Google Scholar 

  28. Caihong Y, Yingnan S, Ronghua L, Hui J, Xiaojun W (2011) Biodegradation of Pendimethalin by two fungus strains isolated from soil in China. In: Bioinformatics and Biomedical Engineering, (iCBBE) 2011 5th International Conference on, pp 1–5

  29. Campoy S, Álvarez-Rodríguez ML, Recio E, Rumbero A, Coque JJR (2009) Biodegradation of 2, 4, 6-TCA by the white-rot fungus Phlebia radiata is initiated by a phase I (O-demethylation)–phase II (O-conjugation) reactions system: implications for the chlorine cycle. Environ Microbiol 11(1):99–110

    CAS  Article  Google Scholar 

  30. Casara KP, Vecchiato AB, Lourencetti C, Pinto AA, Dores EF (2012) Environmental dynamics of pesticides in the drainage area of the São Lourenço River headwaters, Mato Grosso state, Brazil. J Braz Chem Soc 23(9):1719–1731

    CAS  Article  Google Scholar 

  31. Chen S, Liu C, Peng C, Liu H, Hu M, Zhong G (2012) Biodegradation of chlorpyrifos and its hydrolysis product 3,5,6-trichloro-2-pyridinol by a new fungal strain Cladosporium cladosporioides Hu-01. PLoS One 7(10):e47205. doi:10.1371/journal.pone.0047205

    CAS  Article  Google Scholar 

  32. Chrinside AE, Ritter WF, Radosevich M (2011) Biodegradation of aged residues of atrazine and alachlor in a mix-load site soil by fungal enzymes. Appl Environ Soil Sci 2011:1–10. doi:10.1155/2011/658569

    Article  CAS  Google Scholar 

  33. Cserjesi AJ, Johnson EL (1972) Methylation of pentachlorophenol by Trichoderma virgatum. Can J Microbiol 18:45–49

    CAS  Article  Google Scholar 

  34. Cycon M, Piotrowska-Seget Z, Kozdroj J (2010) Linuron effects on microbiological characteristics of sandy soils as determined in a pot study. Ann Microbiol 60:439–449

    Article  Google Scholar 

  35. Coelho J da S, de Oliveira AL, Marques-de Souza CG, Bracht A, Peralta RM (2010) Effect of the herbicides bentazon and diuron on the production of ligninolytic enzymes by Ganoderma lucidum. Int Biodeterior Biodegrad 64:156–161

  36. de Boer W, Folman LB, Summerbell RC, Boddy L (2005) Living in a fungal world: impact of fungi on soil bacterial niche development. FEMS Microbiol Rev 29:795–811

    Article  CAS  Google Scholar 

  37. De-Lima F, Gozzi F, Fiorucci AR, Cardoso CA, Arruda GJ, Ferreira VS (2011) Determination of linuron in water and vegetable samples using stripping voltammetry with a carbon paste electrode. Talanta 83:1763–1768

    CAS  Article  Google Scholar 

  38. Deng W, Lin D, Yao K, Yuan H, Wang Z, Li J, Zou L, Han X, Zhou K, He L, Hu X, Liu S (2015) Characterization of a novel β-cypermethrin-degrading Aspergillus niger YAT strain and the biochemical degradation pathway of β-cypermethrin. Appl Microbiol Biotechnol 99(19):8187–8198

    CAS  Article  Google Scholar 

  39. Derbalah AS, Belal EB (2008) Biodegradation kinetics of cymoxanil in aquatic system. Chem Ecol 24(3):169–180

    CAS  Article  Google Scholar 

  40. Dietrich D, Hickey WJ, Lamar R (1995) Degradation of 4,4′-dichlorobiphenyl, 3,3′,4,4′-tetrachlorobiphenyl, and 2,2′,4,4′,5,5′-hexachlorobiphenyl by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 61:3904–3909

    CAS  Google Scholar 

  41. Diez MC (2010) Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr 10(3):244–267

    Article  Google Scholar 

  42. Diez MC, Gallardo F, Tortella G, Rubilar O, Navia R, Bornhardt C (2012) Chlorophenol degradation in soil columns inoculated with Anthracophyllum discolor immobilized on wheat grains. J Environ Manag 95:S83–S87. doi:10.1016/j.jenvman.2010.09.024

    CAS  Article  Google Scholar 

  43. Di-Landa G, Parrella L, Avagliano S, Ansanelli G, Maiello E, Cremisini C (2009) Assessment of the potential ecological risks posed by antifouling booster biocides to the marine ecosystem of the gulf of Napoli (Italy). Water Air Soil Pollut 200:305–321

    Article  CAS  Google Scholar 

  44. Donoso C, Becerra J, Martínez M, Garrido N, Silva M (2008) Degradative ability of 2,4,6-tribromophenol by saprophytic fungi Trametes versicolor and Agaricus augustus isolated from Chilean forestry. World J Microbiol Biotechnol 24:961–968

    CAS  Article  Google Scholar 

  45. Dosnon-Olette R, Trotel-Aziz P, Couderchet M, Eullaffroy P (2010) Fungicides and herbicide removal in Scenedesmus cell suspensions. Chemosphere 79:117–123

    CAS  Article  Google Scholar 

  46. Dritsa V, Rigas F, Doulia D, Avramides EJ, Hatzianestis I (2009) Optimization of culture conditions for the biodegradation of lindane by the polypore fungus Ganoderma australe. Water Air Soil Pollut 204(1–4):19–27

    CAS  Article  Google Scholar 

  47. Eizuka T, Ito A, Chida T (2003) Degradation of ipconazole by microorganisms isolated from paddy soil. J Pestic Sci 28(2):200–207

    CAS  Article  Google Scholar 

  48. Ellegaard-Jensen L, Aamand J, Kragelund BB, Johnsen AH, Rosendahl S (2013) Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron. Biodegrad 24(6):765–774

    CAS  Article  Google Scholar 

  49. Ellegaard-Jensen L, Knudsen BE, Johansen A, Albers CN, Aamand J, Rosendahl S (2014) Fungal–bacterial consortia increase diuron degradation in water-unsaturated systems. Sci Total Environ 466:699–705

    Article  CAS  Google Scholar 

  50. Elmore MH, McGary KL, Wisecaver JH, Slot JC, Geiser DM, Sink S, O’Donnell K, Rokas A (2015) Clustering of two genes putatively involved in cyanate detoxification evolved recently and independently in multiple fungal lineages. Genome Biol Evol 7(3):789–800

    CAS  Article  Google Scholar 

  51. Fang H, Xiang YQ, Hao YJ, Chu XQ, Pan XD, Yu JQ, Yu YL (2008) Fungal degradation of chlorpyrifos by Verticillium sp. DSP in pure cultures and its use in bioremediation of contaminated soil and pakchoi. Int Biodeterior Biodegrad 61(4):294–303

    CAS  Article  Google Scholar 

  52. Foght J, April T, Biggar K, Aislabie J (2001) Bioremediation of DDT-contaminated soils: a review. Biorem J 5:225–246

    CAS  Article  Google Scholar 

  53. Fragoeiro S, Magan N (2008) Impact of Trametes versicolor and Phanerochaete chrysosporium on differential breakdown of pesticide mixtures in soil microcosms at two water potentials and associated respiration and enzyme activity. Int Biodeterior Biodegrad 62(4):376–383

    CAS  Article  Google Scholar 

  54. Fratila-Apachitei LE, Hirst JA, Siebel MA, Gijzen HJ (1999) Diuron degradation by Phanerochaete chrysosporium BKM-F-1767 in synthetic and natural media. Biotechnol Lett 21:147–154

    CAS  Article  Google Scholar 

  55. Fuentes MS, Briceño GE, Saez JM, Benimeli CS, Diez MC, Amoroso MJ (2013) Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. BioMed Res Int. doi:10.1155/2013/392573

    Google Scholar 

  56. Gago-Ferrero P, Badia-Fabregat M, Olivares A, Piña B, Blánquez P, Vicent T, Barceló D (2012) Evaluation of fungal-and photo-degradation as potential treatments for the removal of sunscreens BP3 and BP1. Sci Total Environ 427:355–363

    Article  CAS  Google Scholar 

  57. Gao Y, Chen S, Hu M, Hu Q, Luo J, Li Y (2012) Purification and characterization of a novel chlorpyrifos hydrolase from Cladosporium cladosporioides Hu-01. PLoS One 7(6):e38137. doi:10.1371/journal.pone.0038137

    CAS  Article  Google Scholar 

  58. Gatidou G, Thomaidis NS, Zhou JL (2007) Fate of Irgarol 1051, diuron and their main metabolites in two UK marine systems after restrictions in antifouling paints. Environ Int 33:70–77

    CAS  Article  Google Scholar 

  59. Gianfreda L, Rao M (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35:339–354

    CAS  Article  Google Scholar 

  60. Gold M, Alic M (1993) Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol Rev 57:605–622

    CAS  Google Scholar 

  61. Goncalves MS, Sampaio SC, Sene L, Suszek FL, Coelho SR, Bravo CE (2012) Isolation of filamentous fungi present in swine wastewater that are resistant and with the ability to remove atrazine. Afr J Biotechnol 11:11074–11077

    CAS  Google Scholar 

  62. Goswami S, Vig K, Singh DK (2009) Biodegradation of alpha and beta endosulfan by Aspergillus sydoni. Chemosphere 75:883–888

    CAS  Article  Google Scholar 

  63. Guillen-Jimenez FDM, Cristiani-Urbina E, Cancino-Díaz JC, Flores-Moreno JL, Barragán-Huerta BE (2012) Lindane biodegradation by the Fusarium verticillioides AT-100 strain, isolated from Agave tequilana leaves: kinetic study and identification of metabolites. Int Biodeterior Biodegrad 74:36–47

    CAS  Article  Google Scholar 

  64. Gupta PK (2004) Pesticide exposure, Indian scene. Toxicol 198:83–90

    CAS  Article  Google Scholar 

  65. Hai FI, Modin O, Yamamoto K, Fukushi K, Nakajima F, Nghiem LD (2012) Pesticide removal by a mixed culture of bacteria and white-rot fungi. J Taiwan Inst Chem Eng 43(3):459–462

    CAS  Article  Google Scholar 

  66. Hangler M, Jensen B, Rønhede S, Sørensen SR (2007) Inducible hydroxylation and demethylation of the herbicide isoproturon by Cunninghamella elegans. FEMS Microbiol Lett 268(2):254–260

    CAS  Article  Google Scholar 

  67. Harino H, Arai T, Ohji M, Ismail AB, Miyazaki N (2009) Contamination profiles of antifouling biocides in selected coastal regions of Malaysia. Arch Environ Contam Toxicol 56:468–478

    CAS  Article  Google Scholar 

  68. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192

    CAS  Article  Google Scholar 

  69. Hayes WJ, Laws ER (1990) Handbook of pesticide toxicology, Classes of pesticides, vol 3. Academic, New York, p. 912

    Google Scholar 

  70. He X, Wubie AJ, Diao Q, Li W, Xue F, Guo Z, Zhou T, Xu S (2014) Biodegradation of neonicotinoid insecticide, imidacloprid by restriction enzyme mediated integration (REMI) generated Trichoderma mutants. Chemosphere 112:526–530

    CAS  Article  Google Scholar 

  71. He YH, Shen DS, Fang CR, Zhu YM (2006) Rapid biodegradation of metsulfuron-methyl by a soil fungus in pure cultures and soil. World J Microbiol Biotechnol 22:1095–1104

    CAS  Article  Google Scholar 

  72. Helal IM, Abo-El-Seoud MA (2015) Fungal biodegradation of pesticide vydate in soil and aquatic system. 4th International Conference on Radiation Sciences and Applications, 13–17/10/2014, Taba, Egypt

  73. Hestbjerg H, Willumsen PA, Christensen M, Andersen O, Jacobsen CS (2003) Bioaugmentation of tar-contaminated soils under field conditions using Pleurotus ostreatus refuse from commercial mushroom production. Environ Toxicol Chem 22(4):692–698

    CAS  Article  Google Scholar 

  74. Huang Y, Zhao X, Luan S (2007) Uptake and biodegradation of DDT by 4 ectomycorrhizal fungi. Sci Total Environ 385:235–241

    CAS  Article  Google Scholar 

  75. Hussain S, Arshad M, Saleem M, Khalid A (2007) Biodegradation of α- and β-endosulfan by soil bacteria. Biodegradation 18(6):731–740

    CAS  Article  Google Scholar 

  76. Hussain S, Arshad M, Springael D, Sørensen SR, Bending GD, Devers-Lamrani M, Maqbool Z, Martin-Laurent F (2015) Abiotic and biotic processes governing the fate of phenylurea herbicides in soils: a review. Crit Rev Environ Sci Technol 45(18):1947–1998

    CAS  Article  Google Scholar 

  77. Hussain S, Devers-Lamrani M, El-Azhari N, Martin-Laurent F (2011) Isolation and characterization of an isoproturon mineralizing Sphingomonas sp. strain SH from a French agricultural soil. Biodegradation 22:637–650

    CAS  Article  Google Scholar 

  78. Hussain S, Sorensen SR, Devers-Lamrani M, El-Sebai T, Martin-Laurent F (2009) Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere 77:1052–1059

    CAS  Article  Google Scholar 

  79. Isoda H, Talorete TP, Han J, Oka S, Abe Y, Inamori Y (2005) Effects of organophosphorous pesticides used in China on various mammalian cells. Environ Sci 12:9–19

    CAS  Google Scholar 

  80. Jain R, Garg V, Yadav D (2014) In vitro comparative analysis of monocrotophos degrading potential of Aspergillus flavus, Fusarium pallidoroseum and Macrophomina sp. Biodegrad 25(3):437–446

    CAS  Article  Google Scholar 

  81. Jauregui J, Valderrama B, Albores A, Vazquez-Duhalt R (2003) Microsomal transformation of organophosphorus pesticides by white rot fungi. Biodegrad 14:397–406

    CAS  Article  Google Scholar 

  82. Kadimaliev DA, Revin VV, Atykyan NA, Nadezhina OS, Parshin AA (2011) The role of laccase and peroxidase of Lentinus (Panus) tigrinus fungus in biodegradation of high phenol concentrations in liquid medium. Appl Biochem Microbiol 47(1):66–71

    CAS  Article  Google Scholar 

  83. Kamei I, Sonoki S, Haraguchi K, Kondo R (2006) Fungal bioconversion of toxic polychlorinated biphenyls by white rot fungus, Phlebia brevispora. Appl Microbiol Biotechnol 73:932–940

    CAS  Article  Google Scholar 

  84. Kamei I, Suhara H, Kondo R (2005) Phylogenetical approach to isolation of white rot fungi capable of degrading polychlorinated dibenzo-p-dioxin. Appl Microbiol Biotechnol 69:358–366

    CAS  Article  Google Scholar 

  85. Kamei I, Takagi K, Kondo R (2011) Degradation of endosulfan and endosulfan sulfate by white-rot fungus Trametes hirsute. J Wood Sci 57:317–322

    CAS  Article  Google Scholar 

  86. Karas PA, Perruchon C, Exarhou K, Ehaliotis C, Karpouzas DG (2011) Potential for bioremediation of agro-industrial effluents with high loads of pesticides by selected fungi. Biodegradation 22(1):215–228

    CAS  Article  Google Scholar 

  87. Kataoka R, Takagi K, Kamei I, Kiyota H, Sato Y (2010a) Biodegradation of dieldrin by a soil fungus isolated from a soil with annual endosulfan applications. Environ Sci Technol 44(16):6343–6349

    CAS  Article  Google Scholar 

  88. Kataoka R, Takagi K, Sakakibara F (2010b) A new endosulfan-degrading fungus, Mortierella species, isolated from a soil contaminated with organochlorine pesticides. J Pestic Sci 35(3):326–332

    CAS  Article  Google Scholar 

  89. Khadrani A, Seigle-Murandi F, Steiman R, Vroumsia T (1999) Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 38(13):3041–3050

    CAS  Article  Google Scholar 

  90. Kim YK, Kim SH, Choi SC (2001) Kinetics of endosulfan degradation by Phanerochaete chrysosporium. Biotechnol Lett 23:163–166

    CAS  Article  Google Scholar 

  91. Knudsen BE, Ellegaard-Jensen L, Albers CN, Rosendahl S, Aamand J (2013) Fungal hyphae stimulate bacterial degradation of 2,6-dichlorobenzamide (BAM). Environ Pollut 181:122–127

    CAS  Article  Google Scholar 

  92. Kookana RS, Baskaran S, Naidu R (1998) Pesticide fate and behavior in Australian soils in relation to contamination and management of soil and water: a review. Aust J Soil Res 36:715–764

    CAS  Article  Google Scholar 

  93. Kullman SW, Matsumura F (1996) Metabolic pathways utilized by Phanerochaete chrysporium for degradation of the cyclodiene pesticide endosulfan. Appl Environ Microbiol 62:593–600

    CAS  Google Scholar 

  94. Kulshrestha G, Kumari A (2010) Simultaneous degradation of mixed insecticides by mixed fungal culture isolated from sewage sludge. J Agric Food Chem 58:11852–11856

    CAS  Article  Google Scholar 

  95. Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47:219–225. doi:10.1007/s00374-010-0505-5

    CAS  Article  Google Scholar 

  96. Kulshreshtha S, Mathur N, Bhatnagar P (2014) Mushroom as a product and their role in mycoremediation. AMB Express 4:29

    Article  CAS  Google Scholar 

  97. Lehr S, Glassgen WE, Sandermann H, Beese F, Scheunert I (1996) Metabolism of isoproturon in soils originating from different agricultural management systems and in cultures of isolated soil bacteria. Int J Environ Anal Chem 65:231–243

    CAS  Article  Google Scholar 

  98. León-Santiesteban HH, Wrobel K, Revah S, Tomasini A (2016) Pentachlorophenol removal by Rhizopus oryzae CDBB-H-1877 using sorption and degradation mechanisms. J Chem Technol Biotechnol 91(1):65–71. doi:10.1002/jctb.4566

    Article  CAS  Google Scholar 

  99. Li X, He J, Li S (2007) Isolation of a chlorpyrifos-degrading bacterium, Sphingomonas sp. strain Dsp-2, and cloning of the mpd gene. Res Microbiol 158:143–149

    CAS  Article  Google Scholar 

  100. Liang L, Lu YL, Yang H (2012) Toxicology of isoproturon to the food crop wheat as affected by salicylic acid. Environ Sci Pollut Res 19:2044–2054

    CAS  Article  Google Scholar 

  101. Liang WQ, Wang ZY, Li H, Wu PC, Hu JM, Luo N, Cao LX, Liu YH (2005) Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11. J Agric Food Chem 53:7415–7420

    CAS  Article  Google Scholar 

  102. Liu X, You MS, Wei YZ, Liao JY, Ye LL, Chen J (2003) Isolation of chlorpyrifos-degrading Aspergillus sp. and measurement of degradation efficiency. Chin J Appl Environ Biol 9:78–80

    CAS  Google Scholar 

  103. Liu Y, Liu YH, Li F, Chen ZS, Lian J, Luo WJ, Huang X, Zhong YC (2004) A broad-spectrum organophosphorus hydrolase from fungus. Acta Sci Nat Univ Sunyatseni 43(2):76–80

    Google Scholar 

  104. Liu YY, Chung Y-C, Xiong Y (2001) Purification and characterization of a dimethoate-degrading enzyme of Aspergillus niger ZHY256 isolated from sewage. Appl Environ Microbiol 67:3746–3749

  105. Marco-Urrea E, Perez-Trujillo M, Vicent T, Caminal G (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74:765–772

    CAS  Article  Google Scholar 

  106. Marin S, Sanchis V, Ramos A, Magan N (1998) Effect of water activity on hydrolytic enzyme production by Fusarium moniliforme and Fusarium proliferatum during colonisation of maise. Int J Food Microbiol 42:185–194

    CAS  Article  Google Scholar 

  107. Marinho G, Rodrigues K, Araujo R, Pinheiro ZB, Silva GMM (2011) Glucose effect on degradation kinetics of methyl parathion by filamentous fungi species Aspergilus niger AN400. Eng Sanit Ambient 16:1–10

    Article  Google Scholar 

  108. Maya K, Upadhyay SN, Singh RS, Dubey SK (2012) Degradation kinetics of chlorpyrifos and 3, 5, 6-trichloro-2-pyridinol (TCP) by fungal communities. Bioresour Technol 126:216–223

    CAS  Article  Google Scholar 

  109. Meng C, Chngchun S, Yanghao G (2004) Study on characteristics of bio-cometabolic removal of omethoate by the Aspergillus spp. Water Res 38:1139–1146

    CAS  Article  Google Scholar 

  110. Mir-Tutusaus JA, Masís-Mora M, Corcellas C, Eljarrat E, Barceló D, Sarrà M, Caminal G, Vicent T, Rodríguez-Rodríguez CE (2014) Degradation of selected agrochemicals by the white rot fungus Trametes versicolor. Sci Total Environ 500:235–242

    Article  CAS  Google Scholar 

  111. Mitra J, Mukherjee PK, Kale SP, Murthy BK (2001) Biodegradation of DDT in soil by genetically improved strains of soil fungus Fusarium solani. Biodegrad 12:235–245

    CAS  Article  Google Scholar 

  112. Mohamed AT, El-Hussain AA, El-Siddig MA, Osman AG (2011) Degradation of oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnol 10(3):274–279

    CAS  Article  Google Scholar 

  113. Mougin C, Pericaud C, Malosse C, Laugero C, Asther M (1996) Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic Sci 47:51–59

    CAS  Article  Google Scholar 

  114. Mukherjee I, Mittal A (2005) Bioremediation of endosulfan using Aspergillus terreus and Cladosporium oxysporum. Bull Environ Contam Toxicol 75:1034–1040

    CAS  Article  Google Scholar 

  115. Munoz A, Koskinen WC, Cox L, Sadowsky MJ (2011) Biodegradation and mineralization of metolachlor and alachlor by Candida xestobii. J Agric Food Chem 59(2):619–627

    CAS  Article  Google Scholar 

  116. Muud PJ, Hance RJ, Wright SJL (1983) The persistence and metabolism of isoproturon in soil. Weed Res 23:239–246

    Article  Google Scholar 

  117. Nagpal V, Srinivasan MC, Paknikar KM (2008) Biodegradation of hexachlorocyclohexane (lindane) by a non-white rot fungus Conidiobolus 03-1-56 isolated from litter. Indian J Microbiol 48:134–141

    CAS  Article  Google Scholar 

  118. Nawaz K, Hussain K, Choudary N, Majeed A, Ilyas U, Ghani A, Lin F, Ali K, Afghan S, Raza G, Lashari MI (2011) Eco-friendly role of biodegradation against agricultural pesticides hazards. Afr J Microbiol Res 5(3):177–183

    Google Scholar 

  119. Negroni A, Zanaroli G, Ruzzi M, Fava F (2010) Biological fate of diuron and sea-nine 211 and their effect on primary microbial activities in slurries of a contaminated sediment from Venice lagoon. Ann Microbiol 60:321–327

    CAS  Article  Google Scholar 

  120. Nguyen L, Hai FI, Kang J, Leusch F, Roddick F, Magram SF, Price WE, Nghiem LD (2014) Enhancement of trace organic contaminant degradation by crude enzyme extract from Trametes versicolor culture: effect of mediator type and concentration. J Taiwan Inst Chem Eng 45(4):1855–1862

    CAS  Article  Google Scholar 

  121. Nwachukwu EO, Osuji JO (2007) Bioremedial degradation of some herbicides by indigenous white rot fungus, Lentinus subnudus. J Plant Sci 2:619–624

    CAS  Article  Google Scholar 

  122. Nyakundi WO, Magoma G, Ochora J, Nyende AB (2011) Biodegradation of diazinon and methomyl pesticides by white rot fungi from selected horticultural farms in rift valley and Central Kenya. J Appl Technol Environ Sanit 1(2):107–124

    CAS  Google Scholar 

  123. Ortega SN, Nitschke M, Mouad AM, Landgraf MD, Rezende MOO, Seleghim MHR, Porto ALM (2011) Isolation of Brazilian marine fungi capable of growing on DDD pesticide. Biodegrad 22(1):43–50

    CAS  Article  Google Scholar 

  124. Osman KA, Ibrahim GH, Askar AI, Alkhail ARA (2008) Biodegradation kinetics of dicofol by selected microorganisms. Pestic Biochem Physiol 91:180–185

    CAS  Article  Google Scholar 

  125. Peng X, Huang J, Liu C, Xiang Z, Zhou J, Zhong G (2012) Biodegradation of bensulphuron-methyl by a novel Penicillium pinophilum strain BP-H-02. J Hazard Mater 213:216–221

    Article  CAS  Google Scholar 

  126. Pereira PM, Sobral Teixeira RS, de Oliveira MAL, da Silva M, FerreiraLeitão VS (2013) Optimized atrazine degradation by Pleurotus ostreatus INCQS 40310: an alternative for impact reduction of herbicide used in sugarcane crops. J Microb Biochem Technol S12:006. doi:10.4172/1948-5948.S12-006

    Google Scholar 

  127. Pesce S, Margoum C, Montuelle B (2010) In situ relationships between spatiotemporal variations in diuron concentrations and phototrophic biofilm tolerance in a contaminated river. Water Res 44:1941–1949

    CAS  Article  Google Scholar 

  128. Pesce SP, Bardot C, Lehours AC, Batisson I, Bohatier J, Fajon C (2008) Effects of diuron in microcosms on natural riverine bacterial community composition: new insight into phylogenetic approaches using PCR-TTGE analysis. Aquat Sci 70:410–418

    CAS  Article  Google Scholar 

  129. Pesce SP, Fajon C, Bardot C, Bonnemoy FDR, Portelli C, Bohatier J (2006) Effects of the phenylurea herbicide diuron on natural riverine microbial communities in an experimental study. Aquat Toxicol 78:303–314

    CAS  Article  Google Scholar 

  130. Peter L, Gajendiran A, Mani D, Nagaraj S, Abraham J (2015) Mineralization of malathion by Fusarium oxysporum strain JASA1 isolated from sugarcane fields. Environ Prog Sustainable Energy 34(1):112–116

    CAS  Article  Google Scholar 

  131. Philippoussis A, Diamantopoulou P, Euthimiadou H, Zervakis G (2001) The composition and porosity of lignocellulosic substrates influence mycelium growth and respiration rates of Lentinus edodes. Int J Med Mushrooms 3:198. doi:10.1615/IntJMedMushr.v3.i2-3.1140

    Article  Google Scholar 

  132. Philippoussis A, Diamantopoulou P, Zervakis G (2002) Monitoring of mycelium growth and fructification of Lentinula edodes on several agricultural residues. In: Sanchez JE, Huerta G, Montiel E (eds) Mushroom biology and mushroom products. UAEM, Cuernavaca, pp. 279–287

    Google Scholar 

  133. Pieuchot M, PerrinGanier C, Portal JM, Schiavon M (1996) Study on the mineralization and degradation of isoproturon in three soils. Chemosphere 33:467–478

    CAS  Article  Google Scholar 

  134. Pinto AP, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira DM, Caldeira AT (2012) Degradation of terbuthylazine difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435:402–410

    Article  CAS  Google Scholar 

  135. Pizzul L, Castillo MDP, Stenström J (2009) Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegred 20:751–759

    CAS  Article  Google Scholar 

  136. Pointing SB (2001) Feasibility of bioremediation by white rot fungi. Appl Microbiol Biotechnol 57:20–33

    CAS  Article  Google Scholar 

  137. Purnomo AS, Kamei I, Kondo R (2008) Degradation of 1,1,1-trichloro-2,2-bis (4-chlorophenyl) ethane (DDT) by brown-rot fungi. J Biosci Bioeng 105(6):614–621

    CAS  Article  Google Scholar 

  138. Purnomo AS, Mori T, Kamei I, Nishii T, Kondo R (2010) Application of mushroom waste medium from Pleurotus ostreatus for bioremediation of DDT-contaminated soil. Int Biodeterior Biodegrad 64(5):397–402

    CAS  Article  Google Scholar 

  139. Purnomo AS, Mori T, Kamei I, Kondo R (2011a) Basic studies and applications on bioremediation of DDT: a review. Int Biodeterior Biodegrad 65(7):921–930

    CAS  Article  Google Scholar 

  140. Purnomo AS, Mori T, Takagi K, Kondo R (2011b) Bioremediation of DDT contaminated soil using brown-rot fungi. Int Biodeterior Biodegrad 65(5):691–695

    CAS  Article  Google Scholar 

  141. Purnomo AS, Putra SR, Shimizu K, Kondo R (2014) Biodegradation of heptachlor and heptachlor epoxide-contaminated soils by white-rot fungal inocula. Environ Sci Pollut Res 21(19):11305–11312

    CAS  Article  Google Scholar 

  142. Quintero JC, Lú-Chau AT, Moreira MT, Feijoo G, Lema JM (2007) Bioremediation of HCH present in soil by the white-rot fungus Bjerkandera adusta in a slurry batch bioreactor. Int Biodeterior Biodegrad 60:319–326

    CAS  Article  Google Scholar 

  143. Quintero JC, Moreira MT, Feijoo G, Lema JM (2008) Screening of white rot fungal species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane (HCH). Cienc Inv Agr 35(2):159–167

  144. Reddy CA, Mathew Z (2007) Bioremediation with white rot fungi, in fungi in bioremediation. In: Gadd GM (ed) British mycological society symposium series 23. Cambridge University Press, Cambridge 2001, pp. 52–78

    Google Scholar 

  145. Rigas F, Papadopoulou K, Dritsa V, Doulia D (2007) Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J Hazard Mater 140(1):325–332

    CAS  Article  Google Scholar 

  146. Ronhede S, Jensen B, Rosendahl S, Kragelund BB, Juhler RK, Aamand J (2005) Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil. Appl Environ Microbiol 71:7927–7932

    Article  CAS  Google Scholar 

  147. Rubilar O, Feijoo G, Diez MC, LuChau TA, Moreira MT, Lema JM (2007) Biodegradation of pentachlorophenol in soil slurry cultures by Bjerkandera adusta and Anthracophyllum discolor. Ind Eng Chem Res 46:744–6751

    Article  CAS  Google Scholar 

  148. Sagar V, Singh DP (2011) Biodegradation of lindane pesticide by non white-rots soil fungus Fusarium sp. World J Microbiol Biotechnol 27(8):1747–1754

    CAS  Article  Google Scholar 

  149. Salam JA, Lakshmi V, Das D, Das N (2013) Biodegradation of lindane using a novel yeast strain, Rhodotorula sp. VITJzN03 isolated from agricultural soil. World J Microbiol Biotechnol 29(3):475–487

    Article  CAS  Google Scholar 

  150. Sapozhnikova Y, Wirth E, Singhasemanon N, Bacey J, Fulton M (2008) Distribution of antifouling biocides in California marinas. J Environ Monit 10:1069–1075

    CAS  Article  Google Scholar 

  151. Sasec V, Cajthaml T (2014) Mycoremediation: current status and perspectives. Int J Med Mushrooms 7(3):360–361

    Article  Google Scholar 

  152. Schuelein J, Glaessgen WE, Hertkorn N, Schroeder P, Jr HS, Kettrup A (1996) Detection and identification of the herbicide isoproturon and its metabolites in field samples after a heavy rainfall event. Int J Environ Anal Chem 65:193–202

    CAS  Article  Google Scholar 

  153. Sene L, Converti A, Secchi GAR, Simão RCG (2010) New aspects on atrazine biodegradation. Braz Arch Biol Technol 53(2):487–496

    CAS  Article  Google Scholar 

  154. Sherif AM, Elhussein AA, Osman AG (2011) Biodegradation of fungicide Thiram (TMTD) in soil under laboratory conditions. Am J Biotechnol Mol Sci 1(2):57–68

    Article  Google Scholar 

  155. Shetty PK, Mitra J, Murthy NBK, Namitha KK, Savitha KN, Raghu K (2000) Biodegradation of cyclodiene insecticide endosulfan by Mucor thermohyalospora MTCC 1384. Curr Sci 79:1381–1383

    CAS  Google Scholar 

  156. Sikkema PH, Hekmat S, Shropshire C, Soltani N (2009) Response of black, cranberry, kidney, and white bean to linuron. Weed Biol Manage 9:173–178

    Article  Google Scholar 

  157. Silambarasan S, Abraham J (2013) Mycoremediation of endosulfan and its metabolites in aqueous medium and soil by Botryosphaeria laricina JAS6 and Aspergillus tamarii JAS9. PLoS One 8(10):e77170. doi:10.1371/journal.pone.0077170

    CAS  Article  Google Scholar 

  158. Silambarasan S, Abraham J (2014) Efficacy of Ganoderma sp. JAS4 in bioremediation of chlorpyrifos and its hydrolyzing metabolite TCP from agricultural soil. J Basic Microbiol 54(1):44–55

    CAS  Article  Google Scholar 

  159. Singh BK, Kuhad RC (1999) Biodegradation of lindane (γ-hexachlorocyclohexane) by the white rot fungus Trametes hirsutas. Lett Appl Microbiol 28:238–241

    CAS  Article  Google Scholar 

  160. Singh BK, Kuhad RC, Singh A, Tripathi KK, Ghosh PK (2000) Microbial degradation of the pesticide lindane (γ-hexachlorocyclohexane). Adv Appl Microbiol 47:269–298

    CAS  Article  Google Scholar 

  161. Singh BK, Walker A, Wright DJ (2002) Persistence of chlorpyrifos, fenamiphos, chlorothalonil, and pendimethalin in soil and their effects on soil microbial characteristics. Bull Environ Contam Toxicol 69(2):181–188

    Article  CAS  Google Scholar 

  162. Slaoui M, Ouhssine M, Berny E, Elyachioui M (2007) Biodegradation of the carbofuran by a fungus isolated from treated soil. Afr J Biotechnol 6:419–423

    CAS  Google Scholar 

  163. Song NH, Yang ZM, Zhou LX, Wu X, Yang H (2006) Effect of dissolved organic matter on the toxicity of chlorotoluron to Triticum aestivum. J Environ Sci 18:101–108

    CAS  Article  Google Scholar 

  164. Sorensen SR, Bending GD, Jacobsen CS, Walker A, Aamand J (2003) Microbial degradation of isoproturon and related phenylurea herbicides in and below agricultural fields. FEMS Microbiol Ecol 45:1–11

    CAS  Article  Google Scholar 

  165. Strauss HS (1997) Is bioremediation a green technology? J Soil Contam 6:219–225

    CAS  Article  Google Scholar 

  166. Suba-Rao RV, Alexander M (1985) Bacterial and fungal cometabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane (DDT) and its breakdown products. Appl Environ Microbiol 49:509–516

    Google Scholar 

  167. Sutherland TD, Horne I, Weir KM, Coppin CW, Williams MR, Selleck M, Russell RJ, Oakeshott JG (2004) Enzymatic bioremediation from enzyme discovery to applications. Clin Exp Pharmacol 31(11):817–821

    CAS  Article  Google Scholar 

  168. Sutherland TD, Weir KM, Lacey MJ, Horne I, Russell RJ, Oakeshott JG (2002) Enrichment of a microbial culture capable of degrading endosulphate, the toxic metabolite of endosulfan. J Appl Microbiol 92:541–548

    CAS  Article  Google Scholar 

  169. Tang J, Liu L, Hua S, Chen Y, Chen J (2009) Improved degradation of organophosphate dichlorvos by Trichoderma atroviride transformants generated by restriction enzyme-mediated integration (REMI). Bioresour Technol 100:480–483

    CAS  Article  Google Scholar 

  170. Taştan BE, Dönmez G (2015) Biodegradation of pesticide triclosan by A. versicolor in simulated wastewater and semi-synthetic media. Pestic Biochem Physiol 118:33–37

    Article  CAS  Google Scholar 

  171. Thomas JE, Gohil H (2011) Microcosm studies on the degradation of o, p′- and p, p′-DDT, DDE, and DDD in a muck soil. World J Microbiol Biotechnol 27(3):619–625

    CAS  Article  Google Scholar 

  172. Tortella G, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31:197–212

    CAS  Article  Google Scholar 

  173. Vacondio B, Birolli WG, Ferreira IM, Seleghim MH, Gonçalves S, Vasconcellos SP, Porto AL (2015) Biodegradation of pentachlorophenol by marine-derived fungus Trichoderma harzianum CBMAI 1677 isolated from ascidian Didemnun ligulum. Biocatal Agric Biotechnol 4(2):266–275

    Google Scholar 

  174. Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod JL, Khadrani A (1996) Biodegradation of three substituted phenylurea herbicides (chlorotoluron, diuron, and isoproturon) by soil fungi. A comparative study. Chemosphere 33:2045–2056

    CAS  Article  Google Scholar 

  175. Vryzas Z, Papadskis EN, Oriakli K, Moysiadis TP, Papadopoulou-Mourkidou E (2012) Biotransformation of atrazine and metolachlor within soil profile and changes in microbial communities. Chemosphere 89(11):1330–1338

    CAS  Article  Google Scholar 

  176. Wang J, Hirai H, Kawagishi H (2012) Biotransformation of acetamiprid by the white-rot fungus Phanerochaete sordida YK-624. Appl Microbiol Biotechnol 93(2):831–835

    CAS  Article  Google Scholar 

  177. Warmink JA, Nazir R, Van-Elsas JD (2009) Universal and species-specific bacterial “fungiphiles” in the mycospheres of different basidiomycetous fungi. Environ Microbiol 11(2):300–312

    CAS  Article  Google Scholar 

  178. Wedemeyer G (1967) Dechlorination of 1,1,1-trichloro-2,2-bis (p-chlorophenyl) ethane by Aerobacter aerogenes. Appl Environ Microbiol 15:569–574

    CAS  Google Scholar 

  179. Weir KM, Sutherland TD, Horne I, Russell RJ, Oakeshott JG (2006) A single monooxygenase, ese, is involved in the metabolism of the organochlorides endosulfan and endosulfate in an Arthrobacter sp. Appl Environ Microbiol 72:3524–3530

    CAS  Article  Google Scholar 

  180. Wen J, Gao D, Zhang B, Liang H (2011) Co-metabolic degradation of pyrene by indigenous white-rot fungus Pseudotrametes gibbosa from the Northeast China. Int Biodeterior Biodegrad 65(4):600–604

    CAS  Article  Google Scholar 

  181. Widenfalk A, Bertilsson S, Sundh I, Goedkoop W (2008) Effects of pesticides on community composition and activity of sediment microbes-responses at various levels of microbial community organization. Environ Pollut 152:576–584

    CAS  Article  Google Scholar 

  182. Xiao P, Mori T, Kamei I, Kondo R (2011a) A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegrad 22(5):859–867

    CAS  Article  Google Scholar 

  183. Xiao P, Mori T, Kamei I, Kondo R (2011b) Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol Lett 314(2):140–146

    CAS  Article  Google Scholar 

  184. Xiao P, Mori T, Kamei I, Kiyota H, Takagi K, Kondo R (2011c) Novel metabolic pathways of organochlorine pesticides dieldrin and aldrin by the white rot fungi of the genus Phlebia. Chemosphere 85(2):218–224

    CAS  Article  Google Scholar 

  185. Xie H, Zhu L, Ma T, Wang J, Wang J, Su J, Shao B (2010) Immobilization of an enzyme from a Fusarium fungus WZ-I for chlorpyrifos degradation. J Environ Sci 22(12):1930–1935

    CAS  Article  Google Scholar 

  186. Xu B, Jianying G, Yongxi Z, Haibo L (1994) Behaviour of DDT in Chinese tropical soils. J Environ Sci Health B29:37–46

    CAS  Article  Google Scholar 

  187. Xu G, Li Y, Zheng W, Peng X, Li W, Yan Y (2007) Mineralization of chlorpyrifos by co-culture of Serratia and Trichosporon spp. Biotechnol Lett 29:1469–1473

    CAS  Article  Google Scholar 

  188. Yadav JS, Doddapaneni H, Subramanian V (2006) P450ome of the white rot fungus Phanerochaete chrysosporium: structure, evolution and regulation of expression of genomic P450 clusters. Biochem Soc Trans 34:1165–1169

    CAS  Article  Google Scholar 

  189. Yadav JS, Loper JC (2000) Cytochrome P450 oxidoreductase gene and its differentially terminated cDNAs from the white rot fungus Phanerochaete chrysosporium. Curr Genet 37:65–73

    CAS  Article  Google Scholar 

  190. Yang L, Chen S, Hu M, Hao W, Geng P, Zhang Y (2011) Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its application for bioremediation of contaminated soils. Biol Fertil Soils 47:917–923

    Article  CAS  Google Scholar 

  191. Yang L, Zhao Y, Zhang B, Yang C, Zhang X (2005) Isolation and characterization of a chlorpyrifos and 3,5,6-trichloro-2-pyridinol degrading bacterium. FEMS Microbiol Lett 251:67–73

    CAS  Article  Google Scholar 

  192. Yin X, Lian B (2012) Dimethoate degradation and calcium phosphate formation induced by Aspergillus niger. Afr J Microbiol Res 6(50):7603–7609

    CAS  Article  Google Scholar 

  193. Yin XL, Jiang L, Song NH, Yang H (2008) Toxic reactivity of wheat (Triticum aestivum) plants to herbicide isoproturon. J Agric Food Chem 56:4825–4831

    CAS  Article  Google Scholar 

  194. Yu YL, Fang H, Wang X, Wu XM, Shan M, Yu JQ (2006) Characterization of a fungal strain capable of degrading chlorpyrifos and its use in detoxification of the insecticide on vegetables. Biodegrad 17:487–494

    CAS  Article  Google Scholar 

  195. Zervakis G, Philippoussis A, Ioannidou S, Diamantopoulou P (2001) Mycelium growth kinetics and optimal temperature conditions for the cultivation of edible mushroom species on lignocellulosic substrates. Folia Microbiol 46:231–234

    CAS  Article  Google Scholar 

  196. Zhao RB, Bao HY, Liu YX (2010b) Isolation and characterization of Penicillium oxalicum ZHJ6 for biodegradation of methamidophos. Agric Sci China 9(5):695–703

    CAS  Article  Google Scholar 

  197. Zhao Y, Yi X, Li M, Liu L, Ma W (2010a) Biodegradation kinetics of DDT in soil under different environmental conditions by laccase extract from white rot fungi. Chin J Chem Eng 18(3):486–492

    CAS  Article  Google Scholar 

  198. Zhou X, Xu S, Liu L, Chen J (2007) Degradation of cyanide by Trichoderma mutants constructed by restriction enzyme mediated integration (REMI). Bioresour Technol 98:2958–2962

    CAS  Article  Google Scholar 

  199. Zouari H, Labat M, Sayadi S (2002) Degradation of 4-chlorophenol by the white rot fingus Phanerochaete chrysosporium in free and immobilized cultures. Bioresour Technol 84(2):145--50.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sabir Hussain.

Additional information

Responsible editor: Gerald Thouand

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maqbool, Z., Hussain, S., Imran, M. et al. Perspectives of using fungi as bioresource for bioremediation of pesticides in the environment: a critical review. Environ Sci Pollut Res 23, 16904–16925 (2016). https://doi.org/10.1007/s11356-016-7003-8

Download citation

Keywords

  • Pesticides
  • Fungi
  • Biodegradation
  • Bioremediation
  • Metabolic pathways
  • enzymes