Skip to main content
Log in

Neurobehavioral deficits and brain oxidative stress induced by chronic low dose exposure of persistent organic pollutants mixture in adult female rat

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

An Erratum to this article was published on 07 July 2016

Abstract

Persistent organic pollutants (POPs) are long-lived organic compounds that are considered one of the major risks to ecosystem and human health. Recently, great concerns are raised about POPs mixtures and its potential toxicity even in low doses of daily human exposure. The brain is mostly targeted by these lipophilic compounds because of its important contain in lipids. So, it would be quite interesting to study the effects of exposure to these mixtures and evaluate their combined toxicity on brain cells. The present study was designed to characterize the cognitive and locomotors deficits and brain areas redox status in rat model. An orally chronic exposure to a representative mixture of POPs composed of endosulfan (2.6 μg/kg), chlorpyrifos (5.2 μg/kg), naphthalene (0.023 μg/kg) and benzopyrane (0.002 μg/kg); the same mixture with concentration multiplied by 10 and 100 was also tested. Exposed rats have shown a disturbance of memory and a decrease in learning ability concluded by Morris water maze and the open field tests results and anxiolytic behaviour in the test of light/dark box compared to control. Concerning brain redox homeostasis, exposed rats have shown an increased malondialdehyde (MDA) amount and an alteration in glutathione (GSH) levels in both the brain mitochondria and cytosolic fractions of the cerebellum, striatum and hippocampus. These effects were accompanied by a decrease in levels of cytosolic glutathione S-transferase (GST) and a highly significant increase in superoxide dismutase (SOD) and catalase (CAT) activities in both cytosolic and mitochondrial fractions. The current study suggests that environmental exposure to daily even low doses of POPs mixtures through diet induces oxidative stress status in the brain and especially in the mitochondria with important cognitive and locomotor behaviour variations in the rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aebi H (1984) Catalase in vitro. Methods Enzymol 105:121–126

    Article  CAS  Google Scholar 

  • Aldridge JE, Meyer A, Seidler FJ, Slotkin TA (2005a) Alterations in central nervous system serotonergic and dopaminergic synaptic activity in adulthood after prenatal or neonatal chlorpyrifos exposure. Environ Health Perspect 113:1027–1031

    Article  CAS  Google Scholar 

  • Aldridge JE, Levin ED, Seidler FJ, Slotkin TA (2005b) Developmental exposure of rats to chlorpyrifos leads to behavioral alterations in adulthood, involving serotonergic mechanisms and resembling animal models of depression. Environ Health Perspect 113:527–531

    Article  Google Scholar 

  • Alvin T, Gearhart DA, Beck WD Jr et al (2007) Chronic, intermittent exposure to chlorpyrifos in rats: protracted effects on axonal transport, neurotrophin receptors, cholinergic markers, and information processing. Pharmacol Applied Therapeut 322(3):1117–1128

    Article  Google Scholar 

  • Anupama O, Santosh K, Yaduvanshi N (2011) Effect of combined exposure of commonly used organophosphate pesticides on lipid peroxidation and antioxidant enzymes in rat tissues. Pesticide Biochem Physiol 99:148–156

    Article  Google Scholar 

  • Araujo J, Greig N (2010) Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs. J Alzheimers Dis 26(1):143–155

    Google Scholar 

  • Araujo JA, Greig NH, Ingram DK et al (2011) Cholinesterase inhibitors improve both memory and complex learning in aged beagle dogs. J Alzheimers Dis 26(1):143–155

  • Ardzivian EA, Diesel B, Desor F, Feidt C, Bouayed J, Kiemer AK, Soulimani R (2012) Neurodevelopmental and behavioral toxicity via lactational exposure to the sum of six indicator non-dioxin-like-polychlorinated biphenyls (Σ6 NDL-PCBs) in mice. Toxicology 299:44–54

    Article  Google Scholar 

  • ATSDR (Agency for Toxic Substances and Disease Register). Toxicological Profile for Endosulfan, August 2015. Available at: http://www.atsdr.cdc.gov/toxprofiles/tp41.pdf

  • Bassi DE, Cenna J, Zhang J et al (2015) Enhanced aggressiveness of benzopyrene-induced squamous carcinomas in transgenic mice overexpressing the proprotein convertase PACE4 (PCSK6). Mol Carcinog 54(10):1122–1131

  • Beauchamp C, Fridovich I (1971) Assay of superoxide dismutase. Anal Biochem 44:276–287

    Article  CAS  Google Scholar 

  • Binukumar BK, Bal A, Kandimalla RJ, Gill KD (2010) Nigrostriatal neuronal death following chronic dichlorvos exposure: crosstalk between mitochondrial impairments, α synuclein aggregation, oxidative damage and behavioral changes. Mol Brain 13:3–35

    Google Scholar 

  • Bouayed J, Rammal H, Soulimani R (2009) Oxidative stress and anxiety: relationship and cellular pathways. Oxid Med Cell Longev 2:63–67

    Article  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Briz V, Molina-Molina JM, Sanchez-Redondo S et al (2011) Differential estrogenic effects of the persistent organochlorine pesticides dieldrin, endosulfan, and lindane in primary neuronal cultures. Toxicol Sci 120:413–427

    Article  CAS  Google Scholar 

  • Bromley-Brits K, Deng Y, Song W (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp (53). doi:10.3791/2920

  • Casetta I, Govoni V, Granieri E (2005) Oxidative stress, antioxidants and neurodegenerative diseases. Curr Pharm 11:52–2033

    Article  Google Scholar 

  • Chen X, Wang X, Dong J (2011) Different reaction patterns of dopamine content to prenatal exposure to chlorpyrifos in different periods. J Appl Toxicol 31:355–359

    Article  CAS  Google Scholar 

  • Cicchetti F, Drouinouellet J, Gross RE (2001) Environmental toxins and Parkinson’sdisease. Trends Pharmacol Sci 30:475–483

    Article  Google Scholar 

  • Clayton DA, Doda JN (2001) Isolation of mitochondria from cells and tissues. In: Spector DL, Goldman R, Leinwand L (eds) Cells: A Laboratory Manual. Sci. Press, Beijing, pp 356–361

    Google Scholar 

  • Di Monte DA, Chan P, Sandy MS (1992) Glutathione in Parkinson’s disease: a link between oxidative stress and mitochondrial damage? Ann Neurol 32(S1):S111–S115

    Article  Google Scholar 

  • Dominico P, Christopher MC, Feyan L, Verginia y (2002) Increased of brain oxidative stress in mild cognitive impairment. Arch Neurol 59:972–976

    Article  Google Scholar 

  • Du G, Lewis MM, Sterling NW, Kong L, Chen H, Mailman RB, Huang X (2014) Microstructural changes in the substantia nigra of asymptomatic agricultural workers. Neurotoxicol Teratol 41:60–64

    Article  CAS  Google Scholar 

  • EIA.U.S. Energy Information Administration. International energy outlook. July 25, 2013. http://www.eia.gov/forcasts/ieo/ (last accessed 10/23/13)

  • Ellman G (1959) Tissusulfhydrylgroups. Archbioclom Biophis 82:70–77

    Article  CAS  Google Scholar 

  • Federico A et al (2012) Mitochondria, oxidative stress and neurodegeneration. J Neurol Sci 2012:05.030

    Google Scholar 

  • Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR (1999) Parkinson’s disease and brain levels of organochlorine pesticides. Ann Neurol 4(36):100–103

    Google Scholar 

  • Franco R, Sanchez-Olea R, Reyes-Reyes EM, Panayiotidis MI (2009) Environmental toxicity, oxidative stress and apoptosis: Menage a Trois. Mutat Res 674:3–22

    Article  CAS  Google Scholar 

  • Garman RH, Fix AS, Jortner BS, Jensen KF, Hardisty JF, Claudio L, Ferenc S (2001) Methods to identify and characterize developmental neurotoxicity for human health risk assessment. II: Neuropathology. Environ Health Perspect 109:93–100

    Article  CAS  Google Scholar 

  • Giesy JP, Solomon KR, Cutler GC et al (2014) Ecological risk assessment of the uses of the organophosphorus insecticide chlorpyrifos, in the United States. In: Giesy J, Solomon K. (eds) Reviews of environmental contamination and toxicology, vol. 231. Springer International Publishing

  • Grova N, Valley A, Turner JD, Morel A, Muller CP, Schroeder H (2007) Modulation of behavior and NMDA-R1 gene mRNA expression in adult female mice after sub-acute administration of benzo(a)pyrene. Neurotoxicology 28:630–636

    Article  CAS  Google Scholar 

  • Guillemette C, Bouillaud-Kremarik P, Sikhayeva N, Rychen G, Soulimani R, Schroeder H (2012) Late effects of a perinatal exposure to a 16 PAH mixture: increase of anxiety-related behaviours and decrease of regional brain metabolism in adult male rats. Toxicol Lett 211:105–113

    Article  Google Scholar 

  • Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139

    CAS  Google Scholar 

  • Halliwell B (2006) Oxidative stress and neurodegeneration: where are we now? J Neurochem 97(6):1634–1658

    Article  CAS  Google Scholar 

  • Hargreaves AJ (2012) Neurodegenerations induced by organophosphorous compound. Adv Exp Med Biol 724:189–204

    Article  CAS  Google Scholar 

  • Hatcher JM, Richardson JR, Guillot TS, Mccormack AL, Dimonte DA (2004) Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system. Exp Neurol 204:619–630

    Article  Google Scholar 

  • Heusinkveld HJ, Molendijk J, van den Berg M, Westerink RHS (2012) Azole fungicides disturb intracellular Ca2+ in an additive manner in dopaminergic PC12 cells. Toxicol Sci 134:374–381

    Article  Google Scholar 

  • Icenogle LM, Christopher NC, Blackwelder WP, Cald- well DP, Qiao D, Seidler FJ, Slotkin TA, Levin ED (2004) Behavioral alterations in adolescent and adult rats caused by a brief subtoxic exposure to chlorpyrifos during neurulation. Neurotoxicol Teratol 26:95–101

    Article  CAS  Google Scholar 

  • Iñigo-Nuñez S, Herreros MA, Encinas T, Gonzales-Bulnes A (2010) Estimated daily intake of pesticides and xenoestrogenic exposure by fruit consumption in the female population from a Mediterranean country (Spain). Food Control 21:417–477

    Article  Google Scholar 

  • Ivens IA, Schmuck G, Machemerf L (1998) Learning and memory of rats after long-term administration of low doses of parathion. Toxicol Sci 46:101–111

    Article  CAS  Google Scholar 

  • Jia Z, Misra HP (2007) Developmental exposure to pesticides zineb and/or endosulfan renders the nigrostriatal dopamine system more susceptible to these environmental chemicals later in life. Neurotoxicology 28:727–735

    Article  CAS  Google Scholar 

  • Kale M, Rathore N, John S, Bhatnagar D (1999) Lipid peroxidative damage on pyrethroid exposure and alterations in antioxidant status in rat erythrocytes: a possible involvement of reactive oxygen species. Toxicol Lett 105:197–205

    Article  CAS  Google Scholar 

  • Kaur P, Radotra B, Minz RW, Gill KD (2007) Impaired mitochondrial energy metabolism and neuronal apoptotic cell death after chronic dichlorvos (OP) exposure in rat brain. Neurotoxicology 28:1208–1219

    Article  CAS  Google Scholar 

  • Kobayashi H, Yayuma A, Chiba KI (1986) Cholinergic system of brain tissue in rats poisoned with the organophosphate O,O-dimethyl O-(2,2-dichlorovinyl) phosphate. Toxicol Appl Pharmacol 82:32–39

    Article  CAS  Google Scholar 

  • Kodavanti PRS (2005) Neurotoxicity of persistent organic pollutants: possible mode(s) of action and further considerations. Dose Response 3:273–305

    Article  CAS  Google Scholar 

  • Kodavanti PR, Osorio C, Royland JE, Ramabhadran R, Alzate O (2011) Aroclor 1254, a developmental neurotoxicant, alters energy metabolism- and intracellular signaling-associated protein networks in rat cerebellum and hippocampus. Toxicol Appl Pharmacol 256:290–299

    Article  CAS  Google Scholar 

  • Konstandi M, Harkitis P, Thermos K, Ogren SO, Johnson EO, Tzimas P, Marselos M (2007) Modification of inherent and drug-induced dopaminergic activity after exposure to benzo(alpha)pyrene. Neurotoxicology 28:860–867

    Article  CAS  Google Scholar 

  • Lafuente A, Natividad P (2013) Neurotoxic effects induced by endosulfan exposure during pregnancy and lactation in female and male rat striatum. Toxicology 311:35–40

    Article  CAS  Google Scholar 

  • Lee Duk-Hee, David R Jacobs. (2014) Hormesis and public health: can glutathione depletion and mitochondrial dysfunction due to very low-dose chronic exposure to persistent organic pollutants be mitigated? J Epidemiol Community Health. doi:10.1136/jech-2014-203861

  • Lukaszewicz-Hussain A (2008) Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level. Food Chem Toxicol 46(1):82–86

    Article  CAS  Google Scholar 

  • Lukaszewicz-Hussain A (2013) Involvement of oxidative stress in liver injury after subchronic intoxication with low doses of chlorpyrifos — study on rats. Central European Journal of Medicine, 8(1):132–139

  • Manczak M, Anekonda TS, Henson E, Park BS, Quinn J, Reddy PH (2006) Mitochondria are a direct site of A beta accumulation in Alzheimer’s disease neurons: implications for free radical generation and oxidative damage in disease progression. Hum Mol Genet 15:1437–1449

    Article  CAS  Google Scholar 

  • Martorell I, Perelló G, Martí-Cid R, Castell V, Llobet JM, Domingo JL (2010) Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: temporal trend. Environ Int 36:424–432

    Article  CAS  Google Scholar 

  • Massicotte C, Knight K, Vander Schyf CJ, Jortner BS, Ehrich M (2005) Effects of organophosphorus compounds on ATP production mitochondrial integrity in cultured cells. Neurotox Res 7:203–217

    Article  CAS  Google Scholar 

  • Meijer M., Timo H., Remco H.S. W. (2014) Acute disturbance of calcium homeostasis in PC12cells as a novel mechanism of action for (sub) micromolar concentrations of organophosphate insecticides. NeuroToxicology 10.1016/j.neuro.2014.01.008

  • Monk TJ, Lau SS (1998) The pharmacology and toxicology of polephenolic glutathione-conjugates. Annu Rev Pharmacol Toxicol 38:229–255

    Article  Google Scholar 

  • Monk TJ et al (1999) The role of glutathione in neuroprotection and neurotoxicity. Toxicol Sci 51:161–177

    Article  Google Scholar 

  • Monteiro DA, Almeida JA, Rantin FT, Kalinin AL (2006) Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp Biochem Physiol C 143(2):141–149

    Google Scholar 

  • Moretto A, Colosio C (2011) Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson’s disease. Neurotoxicology 32:383–391

    Article  CAS  Google Scholar 

  • Morris RGM (1981) Spatial localization does not require the presence of local cues. Learn Motiv 12:239–260

    Article  Google Scholar 

  • Moser VC, Casey M, Hamm A, Carter WH Jr, Simmons JE, Gennings C (2005) Neurotoxicological and statistical analyses of a mixture of five organophosphorus pesticides using a ray design. Toxicol Sci 86:101–115

    Article  CAS  Google Scholar 

  • Moser VC, Padilla S, Simmons JE, Haber LT, Hertzberg RC (2012) Impact of chemical proportions on the acute neurotoxicity of a mixture of seven carbamates in preweanling and adult rats. Toxicol Sci 129(1):126–134

    Article  CAS  Google Scholar 

  • Murray CJL, Vos T, Lozano R, Naghavi M, Flaxman AD et al (2012) Disability adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2197–2223

    Article  Google Scholar 

  • N’Go K, Azzaoui FZ, Ahami A, Soro P, Najimi M, Chigr F (2013) Health l.5(3A):603–611

    Article  Google Scholar 

  • Ojha A, Yaduvanshi SK, Pant SC, Lomash V, Srivasta N (2011) Evaluation of DNA damage and cytotoxicity induced by three commonly used organophosphate pesticides individually and in mixture, in rat tissues. Environ Toxicol 45:233–277

    Google Scholar 

  • Ojo JO, Abdullah L, Evans J, Reed JM, Montague H, Mullan MJ, Crawford FC (2014) Exposure to an organophosphate pesticide, individually or in combination with other Gulf War agents, impairs synaptic integrity and neuronal differentiation, and is accompanied by subtle microvascular injury in a mouse model of Gulf War agent exposure. Neuropathology 34(2):109–127

    Article  CAS  Google Scholar 

  • Okhawa H, Ohishi N, Yagi K (1979) Assay of lipid peroxides in animal tissue by thiobarbituric reaction. Anal Biochem 95:351–358

    Article  Google Scholar 

  • Pathak N, Khandelwal S (2006) Influence of cadmium on murine thymocytes: potentiation of apoptosis and oxidative stress. Toxicol Lett 165:121–132.

  • Perera F, Viswanathan S, Whyatt R, Tang D, Miller RL, Rauh V (2006) Children’s environmental health research-highlights from the Columbia center for children’s environmental health. Ann N Y Acad Sci 1076:15–28

    Article  CAS  Google Scholar 

  • Perera F, Li Z, Whyatt R, Hoepner L, Wang S, Camann D, Rauh V (2009) Prenatal airborne polycyclic aromatic hydrocarbon exposure and child IQ at age 5 years. Pediatrics 124(2):e195–e202

    Article  Google Scholar 

  • Radák Z, Kanekob T, Taharab S, Nakamoto H, Pucsok J, Sasvári M, Nyakas C (2001) Regular exercise improves cognitive function and decreases oxidative damage in rat brain. Neurochem Int 38(1):17–23

    Article  Google Scholar 

  • Rammal H, Bouayed J, Soulimani R (2010) A direct relationship between aggressive behavior in the resident/intruder test and cell oxidative status in adult male mice. Eur J Pharmacol 627:173–176

    Article  CAS  Google Scholar 

  • Rezvanfar MA, Rezvanfar MA, Ranjbar A, Baeeri M, Azadeh M, Abdollahi M (2010) Biochemical evidence on positive effects of rolipram a phosphodiesterase-4 inhibitor in malathion-induced toxic stress in rat blood and brain mitochondria. Pestic Biochem Physiol 98:135–143

    Article  CAS  Google Scholar 

  • Riebe C, Wotjak C (2012) A practical guide to evaluating anxiety-related behavior in rodents. Chapter 10. In: Arpad S, Tamás B (eds) TRP Channels in Drug Discovery: Volume II, Methods in Pharmacology and Toxicology, Springer Science Business Media LLC

    Google Scholar 

  • Roszczenko A, Rogalska J, Moniuszko-Jakoniuk J, Brzóska MM (2013) The effect of exposure to chlorfenvinphos on lipid metabolism and apoptotic and necrotic cells death in the brain of rats. Exp Toxicol Pathol 65(5):531–539

    Article  CAS  Google Scholar 

  • Saunders CR, Das SK, Ramesh A, Shockley DC, Mukherjee S (2006) Benzo(a)pyrene-induced acute neurotoxicity in the F-344 rat: role of oxidative stress. J Appl Toxicol 26:427–438

    Article  CAS  Google Scholar 

  • Sechi G, Deledda MG, Bua G, Satta WM, Deiana GA, Pes GM, Rosati G (1996) Reduced intravenous glutathione in the treatment of early Parkinson’s disease. Prog Neuropsychopharmacol Biol Psychiatry 20(7):1159–1170

    Article  CAS  Google Scholar 

  • Serra-Majem Ll, Ngo de la Cruz J, Ribas L, Tur Mari JA (2003) Olive oil and mediterranean diet: beyond the rhetoric. Eur J Clin Nutr 57:S2–S7

  • Silva MH, Beauvais SL (2010) Human health risk assessment of endosulfan. I: Toxicology and hazard identification. Regul Toxicol Pharmacol 56(1):4 –17

  • Venkataraman C, Sagarb AD, Habibb G et al (2010) The Indian national initiative for advanced biomass cookstoves. The benefits of clean combustion. Energy Sustain Dev 14(2):63–72

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Kebieche.

Additional information

Responsible editor: Philippe Garrigues

An erratum to this article can be found at http://dx.doi.org/10.1007/s11356-016-7103-5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lahouel, A., Kebieche, M., Lakroun, Z. et al. Neurobehavioral deficits and brain oxidative stress induced by chronic low dose exposure of persistent organic pollutants mixture in adult female rat. Environ Sci Pollut Res 23, 19030–19040 (2016). https://doi.org/10.1007/s11356-016-6913-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6913-9

Keywords

Navigation