Skip to main content
Log in

The fractionation and geochemical characteristics of rare earth elements measured in ambient size-resolved PM in an integrated iron and steelmaking industry zone

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Improved understanding of the fractionation and geochemical characteristic of rare earth elements (REEs) from steel plant emissions is important due to the unclear atmospheric signature of these elements and their adverse impact on human health and the environment. In this study, ambient particulate matter of different sizes was collected from one site in an integrated iron and steelmaking industrial zone (HG) and one urban background site with no direct industrial emissions (ZWY) during a 1-year sampling campaign in China. The total concentrations of REEs for TSP, PM10, and PM2.5 were 27.248, 14.989, 3.542 ng/m3 in HG and 6.326, 5.274, 1.731 ng/m3, respectively, in ZWY, which revealed the local influence of the steelmaking activities to the air quality. With respect to ZWY, the REEs in HG site are obviously fractionated in the coarser fraction, and LREEs account for more than 80 % of the total REE burden in all of the samples. Additionally, the REEs in HG and ZWY show a homogeneous trend with successively increased LREE/HREE ratios from the coarse particles to the fine particles. In our samples, La, Ce, Nd, and Sm are the most enriched rare earth elements, especially in the HG site. Moreover, ternary diagrams of LaCeSm indicate that the REEs in HG are potentially contributed by steelworks, carrier vehicles, coal combustion, and road dust re-suspension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alibo DS, Nozaki Y (1999) Rare earth elements in seawater: particle association, shale-normalization, and Ce oxidation. Geochim Cosmochim Ac 63:363–372

    Article  CAS  Google Scholar 

  • Amodio M, Andriani E, Dambruoso PR, de Gennaro G, Di Gilio A, Intini M, Palmisani J, Tutino M (2013) A monitoring strategy to assess the fugitive emission from a steel plant. Atmos Environ 79:455–461

    Article  CAS  Google Scholar 

  • Bozlaker A, Buzcu-Güven B, Fraser MP, Chellam S (2013) Insights into PM10 sources in Houston, Texas: role of petroleum refineries in enriching lanthanoid metals during episodic emission events. Atmos Environ 69:109–117

    Article  CAS  Google Scholar 

  • Byrne RH, Kim K-H (1990) Rare earth element scavenging in seawater. Geochim Cosmochim Ac 54:2645–2656

    Article  CAS  Google Scholar 

  • Celo V, Dabek-Zlotorzynska E, Zhao J, Bowman D (2012) Concentration and source origin of lanthanoids in the Canadian atmospheric particulate matter: a case study. Atmos Pollut Res 3:270–278

    Article  CAS  Google Scholar 

  • Chalvatzaki E, Aleksandropoulou V, Glytsos T, Lazaridis M (2012) The effect of dust emissions from open storage piles to particle ambient concentration and human exposure. Waste Manage 32:2456–2468

    Article  CAS  Google Scholar 

  • Contini D, Belosi F, Gambaro A, Cesari D, Stortini AM, Bove MC (2012) Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: an analysis of possible aerosol sources. J Environ Sci 24:1954–1965

    Article  CAS  Google Scholar 

  • Cotten J, Le Dez A, Bau M, Caroff M, Maury RC, Dulski P, Fourcade S, Bohn M, Brousse R (1995) Origin of anomalous rare-earth element and yttrium enrichments in subaerially exposed basalts: evidence from French Polynesia. Chem Geol 119:115–138

    Article  CAS  Google Scholar 

  • Dai QL, Bi XH, Wu JH, Zhang YF, Wang J, Xu H, Yao L, Jiao L, Feng YC (2015) Characterization and source identification of heavy metals in ambient PM10 and PM2.5 in an integrated iron and steel industry zone compared with a background site. Aerosol Air Qual Res 15:875–887

    CAS  Google Scholar 

  • Ding SM, Liang T, Zhang CS, Yan JC, Zhang ZL (2005) Accumulation and fractionation of rare earth elements (REEs) in wheat: controlled by phosphate precipitation, cell wall absorption and solution complexation. J Exp Bot 56:2765–2775

    Article  CAS  Google Scholar 

  • Dzubay TG, Stevens RK, Gordon GE, Olmez I, Sheffield AE, Courtney WJ (1988) A composite receptor method applied to Philadelphia aerosol. Environ Sci Tech 22:46–52

    Article  CAS  Google Scholar 

  • Geagea ML, Stille P, Millet M, Perrone T (2007) REE characteristics and Pb, Sr and Nd isotopic compositions of steel plant emissions. Sci Total Environ 373:404–419

    Article  CAS  Google Scholar 

  • Han S, Zhang YF, Wu JH, Zhang XY, Tian YZ et al (2015) Evaluation of regional background particulate matter concentration based on vertical distribution characteristics. Atmos Chem Phys 15:11165–11177

    Article  CAS  Google Scholar 

  • Hleis D, Fernandez-Olmo I, Ledoux F, Kfoury A, Courcot L, Desmonts T, Courcot D (2013) Chemical profile identification of fugitive and confined particle emissions from an integrated iron and steelmaking plant. J Hazard Mater 250–251:246–255

    Article  Google Scholar 

  • Kitto ME, Anderson DL, Gordon GE, Olmez I (1992) Rare earth distributions in catalysts and airborne particles. Environ Sci Tech 26:1368–1375

    Article  CAS  Google Scholar 

  • Kulkarni P, Chellam S, Fraser MP (2006) Lanthanum and lanthanides in atmospheric fine particles and their apportionment to refinery and petrochemical operations in Houston, TX. Atmos Environ 40:508–520

    Article  CAS  Google Scholar 

  • Kulkarni P, Chellam S, Fraser MP (2007) Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2.5. Environ Sci Tech 41:6748–6754

    Article  CAS  Google Scholar 

  • Liang T, Ding S, Song W, Chong Z, Zhang C, Li H (2008) A review of fractionations of rare earth elements in plants. J Rare Earth 26:7–15

    Article  Google Scholar 

  • Lv W, Wang Y, Querol X, Zhuang X, Alastuey A, López A, Viana M (2006) Geochemical and statistical analysis of trace metals in atmospheric particulates in Wuhan, central China. Environ Geol 51:121–132

    Article  CAS  Google Scholar 

  • Machemer SD (2004) Characterization of airborne and bulk particulate from iron and steel manufacturing facilities. Environ Sci Tech 38:381–389

    Article  CAS  Google Scholar 

  • Mazzei F, D’Alessandro A, Lucarelli F, Marenco F, Nava S, Prati P, Valli G, Vecchi R (2006) Elemental composition and source apportionment of particulate matter near a steel plant in Genoa (Italy). Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 249:548–551

    Article  CAS  Google Scholar 

  • Morales Del Mastro A, Pereyra M, Londonio A, Pereyra V, Rebagliati RJ, Dawidowski L, Gómez D, Smichowski P (2014) Chemical profile of size-fractionated soils collected in a semiarid industrial area of Argentina. Atmos Environ 98:299–307

    Article  CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A, Viana M, Salvador P, Sánchez de la Campa A, Artiñano B, de la Rosa J, Gibbons W (2006) Variations in atmospheric PM trace metal content in Spanish towns: illustrating the chemical complexity of the inorganic urban aerosol cocktail. Atmos Environ 40:6791–6803

    Article  CAS  Google Scholar 

  • Moreno T, Querol X, Alastuey A, Pey J, Minguillon MC, Perez N, Bernabe RM, Blanco S, Cardenas B, Gibbons W (2008) Lanthanoid geochemistry of urban atmospheric particulate matter. Environ Sci Tech 42:6502–6507

    Article  CAS  Google Scholar 

  • Nagender Nath B, Bau M, Ramalingeswara Rao B, Rao CM (1997) Trace and rare earth elemental variation in Arabian Sea sediments through a transect across the oxygen minimum zone. Geochim Cosmochim Ac 61:2375–2388

    Article  Google Scholar 

  • Och LM, Müller B, Wichser A, Ulrich A, Vologina EG, Sturm M (2014) Rare earth elements in the sediments of Lake Baikal. Chem Geol 376:61–75

    Article  CAS  Google Scholar 

  • Olmez I, Sheffield AE, Gordon GE, Houck JE, Pritchett LC, Cooper JA, Dzubay TG, Bennett RL (1988) Compositions of particles from selected sources in Philadelphia for receptor modeling applications. Japca 38:1392–1402

    Article  CAS  Google Scholar 

  • Pietra R, Sabbioni E, Orvini E, Vocaturo G, Colombo F, Zanoni M, Rodi F (1984) Occupational risk to rare earths. Inorg Chim Acta 94:143–144

    Article  Google Scholar 

  • Pope CA (2000) Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk? Environ Health Persp 108:713–723

    Article  CAS  Google Scholar 

  • Pope CA, Dockery DW (2006) Health effects of fine particulate air pollution: lines that connect. J Air Waste Manage 56:709–742

    Article  CAS  Google Scholar 

  • Pope CA III, Ezzati M, Dockery DW (2009) Fine-particulate air pollution and life expectancy in the United States. New Engl J Med 360:376–386

    Article  CAS  Google Scholar 

  • Prati P, Zucchiatti A, Lucarelli F, Mandò PA (2000) Source apportionment near a steel plant in Genoa (Italy) by continuous aerosol sampling and PIXE analysis. Atmos Environ 34:3149–3157

    Article  CAS  Google Scholar 

  • Querol X, Alastuey A, Viana MMRS, Artinano B, Salvador P, do Santos SG, Patier RF, Ruiz CR, de la Rosa J, de la Campa AS (2004) Speciation and origin of PM10 and PM2.5 in Spain. J Aerosol Sci 9:1151–1172

    Article  Google Scholar 

  • Rim KT, Koo KH, Park JS (2013) Toxicological evaluations of rare earths and their health impacts to workers: a literature review. Saf Health Work 4:12–26

    Article  CAS  Google Scholar 

  • Sabbioni E, Pietra R, Gaglione P, Vocaturo G, Colombo F, Zanoni M, Rodi F (1982) Long-term occupational risk of rare-earth pneumoconiosis. A case report as investigated by neutron activation analysis. Sci Total Environ 26:19–32

    Article  CAS  Google Scholar 

  • Sholkovitz ER, Landing WM, Lewis BL (1994) Ocean particle chemistry: the fractionation of rare earth elements between suspended particles and seawater. Geochim Cosmochim Ac 58:1567–1579

    Article  CAS  Google Scholar 

  • Shuai Q, Yang W, Hu SH, Lu AM, CG Z (2005) Determination of trace rare earth elements in air particulate matter by ICP-MS with microwave digestion. J Anal Sci 4:375–377, in Chinese

    Google Scholar 

  • Smolka-Danielowska D (2010) Rare earth elements in fly ashes created during the coal burning process in certain coal-fired power plants operating in Poland-Upper Silesian Industrial Region. J Environ Radioact 101:965–968

    Article  CAS  Google Scholar 

  • Suzuki Y, Suzuki T, Furuta N (2010) Determination of rare earth elements (REEs) in airborne particulate matter (APM) collected in Tokyo, Japan, and a positive anomaly of europium and terbium. Anal Sci 26:929–935

    Article  CAS  Google Scholar 

  • Suzuki Y, Hikida S, Furuta N (2011) Cycling of rare earth elements in the atmosphere in central Tokyo. J Environ Monit 13:3420–3428

    Article  CAS  Google Scholar 

  • Taiwo AM, Beddows DCS, Calzolai G, Harrison RM, Lucarelli F, Nava S, Shi Z, Valli G, Vecchi R (2014) Receptor modelling of airborne particulate matter in the vicinity of a major steelworks site. Sci Total Environ 490:488–500

    Article  CAS  Google Scholar 

  • Tsai JH, Lin KH, Chen CY, Ding JY, Choa CG, Chiang HL (2007) Chemical constituents in particulate emissions from an integrated iron and steel facility. J Hazard Mater 147:111–119

    Article  CAS  Google Scholar 

  • Tsai JH, Lin KH, Chen CY, Lai N, Ma SY, Chiang HL (2008) Volatile organic compound constituents from an integrated iron and steel facility. J Hazard Mater 157:569–578

    Article  CAS  Google Scholar 

  • Wang L, Liang T (2014) Accumulation and fractionation of rare earth elements in atmospheric particulates around a mine tailing in Baotou, China. Atmos Environ 88:23–29

    Article  Google Scholar 

  • Wang CX, Zhu W, Peng A, Guichreit R (2001) Comparative studies on the concentration of rare earth elements and heavy metals in the atmospheric particulate matter in Beijing, China, and in Delft, the Netherlands. Environ Int 26:309–313

    Article  CAS  Google Scholar 

  • Wang Q, Bi XH, Wu JH, Zhang YF, Feng YC (2013) Heavy metals in urban ambient PM10 and soil background in eight cities around China. Environ Monit Assess 185:1473–1482

    Article  CAS  Google Scholar 

  • Wang L, Liang T, Zhang Q, Li K (2014) Rare earth element components in atmospheric particulates in the Bayan Obo mine region. Environ Res 131:64–70

    Article  CAS  Google Scholar 

  • Wei FS, Yang GZ et al (1990) Soil element background value in China. China Environmental Science Press, Beijing, in Chinese

    Google Scholar 

  • Wongphatarakul V, Friedlander SK, Pinto JP (1998) A comparative study of PM2.5 ambient aerosol chemical databases. Environ Sci Tech 32:3926–3934

    Article  CAS  Google Scholar 

  • Wyttenbach A, Furrer V, Schleppi P, Tobler L (1998) Rare earth elements in soil and in soil-grown plants. Plant Soil 199:267–273

    Article  CAS  Google Scholar 

  • Xu C, Campbell IH, Kynicky J, Allen CM, Chen Y, Huang Z, Qi L (2008) Comparison of the Daluxiang and Maoniuping carbonatitic REE deposits with Bayan Obo REE deposit, China. Lithos 106:12–24

    Article  CAS  Google Scholar 

  • Xu H, Bi XH, Zheng WW, Wu JH, Feng YC (2014) Particulate matter mass and chemical component concentrations over four Chinese cities along the western Pacific coast. Environ Sci Pollut Res 22:1940–1953

    Article  Google Scholar 

  • Zhan G, Guo Z (2013) Basic properties of sintering dust from iron and steel plant and potassium recovery. J Environ Sci 25:1226–1234

    Article  CAS  Google Scholar 

  • Zhang ZQ, Friedlander SK (2000) A comparative study of chemical databases for fine particle Chinese. Environ Sci Tech 34:4687–4694

    Article  CAS  Google Scholar 

  • Zhang FS, Yamasaki S, Kimura K (2001) Rare earth element content in various waste ashes and the potential risk to Japanese soils. Environ Int 27:393–398

    Article  Google Scholar 

  • Zhang Y, Jiang Z, He M, Hu B (2007) Determination of trace rare earth elements in coal fly ash and atmospheric particulates by electrothermal vaporization inductively coupled plasma mass spectrometry with slurry sampling. Environ Pollut 148:459–467

    Article  CAS  Google Scholar 

  • Zhao L, Zhang FS, Zhang J (2008) Chemical properties of rare earth elements in typical medical waste incinerator ashes in China. J Hazard Mater 158:465–470

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (No. 21407081). The authors also thank the staff of the Hangzhou Environmental Monitoring Center Station for their cooperation in the sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaohui Bi.

Additional information

Responsible editor: Gerhard Lammel

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 299 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, Q., Li, L., Yang, J. et al. The fractionation and geochemical characteristics of rare earth elements measured in ambient size-resolved PM in an integrated iron and steelmaking industry zone. Environ Sci Pollut Res 23, 17191–17199 (2016). https://doi.org/10.1007/s11356-016-6893-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6893-9

Keywords

Navigation