Skip to main content

Advertisement

Log in

Bioelectricity generation and dewatered sludge degradation in microbial capacitive desalination cell

  • Water Reclamation and Reuse
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Microbial desalination cell (MDC) is a new approach for the synergy in bioelectricity generation, desalination and organic waste treatment without additional power input. However, current MDC systems cause salt accumulation in anodic wastewater and sludge. A microbial capacitive desalination cell (MCDC) with dewatered sludge as anodic substrate was developed to address the salt migration problem and improve the sludge recycling value by special designed-membrane assemblies, which consisted of cation exchange membranes (CEMs), layers of activated carbon cloth (ACC), and nickel foam. Experimental results indicated that the maximum power output of 2.06 W/m3 with open circuit voltage (OCV) of 0.942 V was produced in 42 days. When initial NaCl concentration was 2 g/L, the desalinization rate was about 15.5 mg/(L·h) in the first 24 h, indicating that the MCDC reactor was suitable to desalinize the low concentration salt solution rapidly. The conductivity of the anodic substrate decreased during the 42-day operation; the CEM/ACC/Ni assemblies could effectively restrict the salt accumulation in MCDC anode and promote dewatered sludge effective use by optimizing the dewatered sludge properties, such as organic matter, C/N, pH value, and electric conductivity (EC).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • APHA (1998) Standard methods for the examination of water and wastewater, 20th. American Public Health Association, American Water Works Association, Water Pollution Control Federation, Washington, DC

    Google Scholar 

  • Aslan M, Zeiger M, Jäckel N, Grobelsek I, Weingarth D, Presser V (2016) Improved capacitive deionization performance of mixed hydrophobic/hydrophilic activated carbon electrodes. J Phys Condens Matter 28:114003

    Article  CAS  Google Scholar 

  • Bastida F, Kandele E, Moreno JL, Ros M, García C, Hernández T (2008) Application of fresh and composted organic wastes modifies structure, size and activity of soil microbial community under semiarid climate. Appl Soil Ecol 40:318–329

    Article  Google Scholar 

  • Broséus R, Cigana J, Barbeau B, Daines-Martinez C, Suty H (2009) Removal of total dissolved solids, nitrates and ammonium ions from drinking water using charge-barrier capacitive deionisation. Desalination 249:217–223

    Article  Google Scholar 

  • Busch M, Mickols WE (2004) Reducing energy consumption in seawater desalination. Desalination 165:299–312

    Article  CAS  Google Scholar 

  • Cao XX, Huang X, Liang P, Xiao K, Zhou YJ, Zhang XY, Logan BE (2009) A new method for water desalination using microbial desalination cells. Environ Sci Technol 43:7148–7152

    Article  CAS  Google Scholar 

  • Chen X, Xia X, Liang P, Cao X, Sun H, Huang X, Chen X (2011) Stacked microbial desalination cells to enhance water desalination efficiency. Environ Sci Technol 45:2465–2470

    Article  CAS  Google Scholar 

  • Chen SS, Liu GL, Zhang RD, Qin BY, Luo Y (2012) Development of the microbial electrolysis desalination and chemical-production cell for desalination as well as acid and alkali productions. Environ Sci Technol 46:2467–2472

    Article  CAS  Google Scholar 

  • Cheng SA, Liu H, Logan BE (2005) Power densities using different cathode catalysts (Pt and CoTMPP) and colymer binders (nafion and PTFE) in single chamber microbial fuel cells. Environ Sci Technol 40:364–369

    Article  Google Scholar 

  • Clauwaert P, Aelterman P, Pham TH, Schamphelaire LD, Carballa M, Rabaey K, Verstraet W (2008) Minimizing losses in bio-electrochemical systems: the road to applications. Appl Microbiol Biotechnol 79:901–913

  • Forrestal C, Xu P, Ren ZY (2012) Sustainable desalination using a microbial capacitive desalination cell. Energ Environ Sci 5:7161

    Article  CAS  Google Scholar 

  • Frano B (2005) PEM fuel cells: theory and practice. Elsevier Academic Press, New York

  • He Z, Huang YL, Manoha AK, Mansfeld F (2008) Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. Bioelectrochemistry 74:78–82

    Article  CAS  Google Scholar 

  • Jacobson KS, Drew DM, He Z (2011a) Efficient salt removal in a continuously operated upflow microbial desalination cell with an air cathode. Bioresour Technol 102:376–380

    Article  CAS  Google Scholar 

  • Jacobson KS, Drew DM, He Z (2011b) Use of a liter-scale microbial desalination cell as a platform to study bioelectrochemical desalination with salt solution or artificial seawater. Environ Sci Technol 45:4652–4657

    Article  CAS  Google Scholar 

  • Kim Y, Logan BE (2011) Series assembly of microbial desalination cells containing stacked electrodialysis cells for partial or complete seawater desalination. Environ Sci Technol 45:5840–5845

    Article  CAS  Google Scholar 

  • Kim Y, Logan BE (2013) Simultaneous removal of organic matter and salt ions from saline wastewater in bioelectrochemical systems. Desalination 308:115–121

    Article  CAS  Google Scholar 

  • Logan BE, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K (2006) Microbial fuel cells: methodology and technology. Environ Sci Technol 40:5181–5192

    Article  CAS  Google Scholar 

  • Luo HP, Jenkins PE, Ren Z (2011) Concurrent desalination and hydrogen generation using microbial electrolysis and desalination cells. Environ Sci Technol 45:340–344

    Article  CAS  Google Scholar 

  • Luo HP, Xu P, Roane TM, Jenkins PE, Ren ZY (2012) Microbial desalination cells for improved performance in wastewater treatment, electricity production, and desalination. Bioresour Technol 105:60–66

    Article  CAS  Google Scholar 

  • Mehanna M, Saito T, Yan JL, Hickner M, Cao XX, Huang X, Logan BE (2010) Using microbial desalination cells to reduce water salinity prior to reverse osmosis. Energ Environ Sci 3:1114–1120

    Article  CAS  Google Scholar 

  • Meng FY, Jiang JQ, Zhao QL, Wang K, Zhang GD, Fan QX, Wei LL, Ding J, Zheng Z (2014) Bioelectrochemical desalination and electricity generation in microbialdesalination cell with dewatered sludge as fuel. Bioresour Technol 157:120–126

    Article  CAS  Google Scholar 

  • Mohan SV, Mohanakrishna G, Sarma PN (2008) Effect of anodic metabolic function on bioelectricity generation and substrate degradation in single chambered microbial fuel cell. Environ Sci Technol 42:8088–8094

    Article  CAS  Google Scholar 

  • Morel A, Zuo KC, Xia X, Wei JC, Luo X, Liang P, Huang X (2012) Microbial desalination cells packed with ion-exchange resin to enhance water desalination rate. Bioresour Technol 118:43–48

    Article  CAS  Google Scholar 

  • Qu YP, Feng YJ, Wang X, Liu J, Lv JW, He WH, Logan BE (2012) Simultaneous water desalination and electricity generation in a microbial desalination cell with electrolyte recirculation for pH control. Bioresour Technol 106:89–94

    Article  CAS  Google Scholar 

  • Rabaey K, Ossieur W, Verhaege M, Verstraete W (2005) Continuous microbial fuel cells convert carbohydrates to electricity. Water Sci Technol 52:515–523

    CAS  Google Scholar 

  • Rismani-Yazdi H, Carver SM, Christy AD, Tuovinen OH (2008) Cathodic limitations in microbial fuel cells: an overview. J Power Sources 180:683–694

    Article  CAS  Google Scholar 

  • Wen QX, Zhang HC, Chen ZQ, Li YF, Nan J, Feng YJ (2012) Using bacterial catalyst in the cathode of microbial desalination cell to improve wastewater treatment and desalination. Bioresour Technol 125:108–113

    Article  CAS  Google Scholar 

  • Xu P, Drewes JE, Heil D, Wang G (2008) Treatment of brackish produced water using carbon aerogel-based capacitive deionization technology. Water Res 42:2605–2617

    Article  CAS  Google Scholar 

  • Xu HC, He PJ, Wang GZ, Shao LM, Lee DJ (2011) Anaerobic storage as a pretreatment for enhanced biodegradability of dewatered sewage sludge. Bioresour Technol 102:667–671

    Article  CAS  Google Scholar 

  • Yuan LL, Yang XF, Liang P, Wang L, Huang ZH, Wei JC, Huang X (2012) Capacitive deionization coupled with microbial fuel cells to desalinate low-concentration salt water. Bioresour Technol 110:735–738

    Article  CAS  Google Scholar 

  • Zeng G, Yu Z, Chen Y, Zhang J, Li H, Yu M, Zhao M (2011) Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresour Technol 102:5905–5911

    Article  CAS  Google Scholar 

  • Zhang B, He Z (2012) Integrated salinity reduction and water recovery in an osmotic microbial desalination cell. RSC Advances 2:3265–3269

    Article  CAS  Google Scholar 

  • Zhang JN, Zhao QL, Aelterman P, You SJ, Jiang JQ (2008) Electricity generation in a microbial fuel cell with a microbially catalyzed cathode. Biotechnol Lett 30:1771–1776

    Article  CAS  Google Scholar 

  • Zhang GD, Zhao QL, Jiao Y, Zhang JN, Jiang JQ, Ren NQ, Kim BH (2011) Improved performance of microbial fuel cell using combination biocathode of graphite fiber brush and graphite granules. J Power Sources 196:6036–6041

    Article  CAS  Google Scholar 

  • Zhang GD, Zhao QL, Jiao Y, Wang K, Lee DJ, Ren NQ (2012) Efficient electricity generation from sewage sludge using biocathode microbial fuel cell. Water Res 46:43–52

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge funding from Project 51378144 supported by the National Nature Science Foundation of China and the supports by State Key Laboratory of Urban Water Resource and Environment (2016DX05), Harbin Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingliang Zhao or Xiaolin Na.

Additional information

Responsible editor: Angeles Blanco

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, F., Zhao, Q., Na, X. et al. Bioelectricity generation and dewatered sludge degradation in microbial capacitive desalination cell. Environ Sci Pollut Res 24, 5159–5167 (2017). https://doi.org/10.1007/s11356-016-6853-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6853-4

Keywords

Navigation