Skip to main content
Log in

The influence of diesel—truck exhaust particles on the kinetics of the atmospheric oxidation of dissolved sulfur dioxide by oxygen

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The automobile exhausts are one of the major sources of particulate matter in urban areas and these particles are known to influence the atmospheric chemistry in a variety of ways. Because of this, the oxidation of dissolved sulfur dioxide by oxygen was studied in aqueous suspensions of particulates, obtained by scraping the particles deposited inside a diesel truck exhaust pipe (DEP). A variation in pH showed the rate to increase with increase in pH from 5.22 to about ∼6.3 and to decrease thereafter becoming very slow at pH = 8.2. In acetate-buffered medium, the reaction rate was higher than the rate in unbuffered medium at the same pH. Further, the rate was found to be higher in suspension than in the leachate under otherwise identical conditions. And, the reaction rate in the blank reaction was the slowest. This appears to be due to catalysis by leached metal ions in leachate and due to catalysis by leached metal ions and particulate surface both in suspensions. The kinetics of dissolved SO2 oxidation in acetate-buffered medium as well as in unbuffered medium at pH = 5.22 were defined by rate law: k obs  = k 0 + k cat [DEP], where k obs and k 0 are observed rate constants in the presence and the absence of DEP and k cat is the rate constant for DEP-catalyzed pathway. At pH = 8.2, the reaction rate was strongly inhibited by DEP in buffered and unbuffered media. Results suggest that the DEP would have an inhibiting effect in those areas where rainwater pH is 7 or more. These results at high pH are of particular significance to the Indian subcontinent, because of high rainwater pH. Conversely, it indicates the DEP to retard the oxidation of dissolved SO2 and control rainwater acidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alipazaga MV, Moya HD, Coichev N (2010) Effect of some antioxidants on oxidative DNA damage induced by autoxidation of microquantities of sulfite in the presence of Ni(II)/Gly-Gly-L-His. J Coord Chem 63:2450–2460

    Article  CAS  Google Scholar 

  • Anast JM, Margerum DW (1981) Trivalent copper catalysis of the autoxidation of sulfite. Kinetics and mechanism of the copper(III/II) tetraglycine reactions with sulfite. Inorg Chem 20:2319

    Article  CAS  Google Scholar 

  • Alyea HN, Bäckström HLJ (1929) The inhibitive action of alcohols on the oxidation of sodium sulfite. J Am Chem Soc 51:90–109

    Article  CAS  Google Scholar 

  • Begam S, Hussain F, Prasad DSN (2013) Kinetics of formic acid inhibited uncatalyzed and Co2O3 catalyzed autoxidation of sulfur(IV) in alkaline medium. Chemica Sinica pp 10(4):122–131

    Google Scholar 

  • Berndt T, Jokinen T, Sipilae M, Mauldin RL, Herrmann H, Stratmann F, Junninen H, Kulmala M (2014) H2SO4 formation from the gas-phase reaction of stabilized Criegee Intermediates with SO2: Influence of water vapour content and temperature. Atmos Environ 89:603–612

    Article  CAS  Google Scholar 

  • Bhargava R, Prasad DSN, Rani A, Bhargava P, Jain U, Gupta KS (1992) Kinetics of autoxidation of aqueous sulfur dioxide in suspensions of nickel(III) oxide. Transition Met Chem 17:238–241

    Article  CAS  Google Scholar 

  • Bhargava P, Gupta KS (1993) Kinetics of oxidation of sulfur(IV) by peroxodisulfate: relative reactivity of bisulfite and sulfite ions. Indian J Chem 32A:201–204

    CAS  Google Scholar 

  • Brandt C, Eldik VR (1995) Transition metal catalyzed oxidation of aqueous sulfur(IV) oxides. Atmospheric relevant process and mechanisms. Chem Rev 95:119–190

    Article  CAS  Google Scholar 

  • Brandt C, Eldik VR (1998) Kinetics and mechanism of iron(III)-catalysed autoxidation of sulfur(IV) oxides in aqueous solution: the influence of pH, medium and aging. Transition Met Chem 23:667–675

    Article  CAS  Google Scholar 

  • Brodzinsky R, Chang SG, Markowitz SS, Novakov T (1980) Kinetics and mechanisms for the catalytic oxidation of sulfur dioxide on carbon in aqueous suspensions. J Phys Chem 84:3354–3358

    Article  CAS  Google Scholar 

  • Zhao B, Li Y, Zhuo Y, Huiling T, Xiaowen Z, Changhe C (2007) Mass transfer and kinetics study on the sulfite forced oxidation with manganese ion catalyst. Korean J Chem Eng 24:471–476

    Article  Google Scholar 

  • Buxton GV, McGowan S, Salmon GA, Williams JE, Wood ND (1996) A study of the spectra and reactivity of oxysulfur-radical anions in the chain oxidation of S(lV): a pulse and γ-radiolysis study. Atmos Environ 30:2483–2493

    Article  CAS  Google Scholar 

  • Cohen S, Chang SG, Markovitz SS, Novakov T (1981) Role of fly ash in catalytic oxidation of S(IV) slurries. Environ Sci Technol 15:1498–1502

    Article  CAS  Google Scholar 

  • Cui S, Wang L, Hao S, Du L (2012) Oxidation rate of sodium sulfite in presence of inhibitors. Energy Procedia (Pt C) 16:2060–2066

    Article  CAS  Google Scholar 

  • Dhayal Y, Chandel CPS, Gupta KS (2014a) Role of some organic inhibitors on the oxidation of dissolved sulphur dioxide by oxygen in rainwater medium. Environ Sci Pollut Res 21:3474–3483

    Article  CAS  Google Scholar 

  • Dhayal Y, Chandel CPS, Gupta KS (2014b) The influence of hydroxyl volatile organic compounds on the oxidation of aqueous sulfur dioxide by oxygen. Environ Sci Pollut Res 21:7805–7817

    Article  CAS  Google Scholar 

  • Dhayal Y (2014) Role of trace atmospheric constituents in atmospheric aqueous phase autoxidation of sulfur dioxide. Ph D Thesis, University of Rajasthan, Jaipur India, p 61

  • Fisher M, Warneck P (1996) Photodecomposition and photoxidation of hydrogen sulphite in aqueous solution. J Phys Chem 100:15111–15117

    Article  Google Scholar 

  • Grgić I, Hudnik V, Bizjak M, Levec J (1993) Aqueous S(IV) oxidation—III. Catalytic effect of soot particles. Atmos Environ Part A General Topics 27:1409–1416

    Article  Google Scholar 

  • Grgic I, Dovzan A, Bercic G, Hundik V (1998) The effects of atmospheric organic compounds on the Fe-catalyzed S(IV) autoxidation in aqueous solution. J Atmos Chem 29:315–337

    Article  CAS  Google Scholar 

  • Grgic I, Podkrajsek B, Barzaghi P, Herrmann H (2007) Scavenging of SO4 - radical anions by mono- and dicarboxylic acids in the Mn(II)-catalyzed S(IV) oxidation in aqueous solution. Atmos Environ 41:9187–9194

  • Gupta KS, Madnawat PVS, Rani A, Sharma M, Prasad DSN, Jain U, Bhargav P, Saxena D (1991) Kinetics of heterogeneous autoxidation of sulphur dioxide in aerosols, droplets & aqueous suspensions. Environmental considerations. In: Gupta KS (ed) Chemical kinetics and reaction mechanism. RBSA Publisher, Jaipur, pp 117–163

    Google Scholar 

  • Gupta KS, Madnawat PVS, Bhargava R, Prasad DSN, Sharma M, Rani A (1992) Autoxidation of aqueous sulfur dioxide in suspensions of minerals and rocks. Precip. Scavenging Atmos.-Surf. Exch [Proc. Int. Conf.], 153–160

  • Gupta KS, Mehta RK, Sharma AK, Mudgal PK, Bansal SP (2008) Kinetics of uninhibited and ethanol–inhibited CoO, Co2O3 and Ni2O3 catalyzed autoxidation of sulfur(IV) in alkaline medium. Transition Met Chem 33:809–817

    Article  CAS  Google Scholar 

  • Gupta KS, Jain U, Singh A, Mehta RK, Manoj SV, Prasad DNS, Sharma A, Parasar P, Bansal SP (2004) Kinetics and mechanism of the osmium(VIII)-catalyzed autoxidation of aqueous sulphur dioxide in acidic and alkaline medium. J Indian Chem Soc 81:1083–1093

    CAS  Google Scholar 

  • Gupta KS (2012) Aqueous phase atmospheric oxidation of sulfur dioxide by oxygen: role of trace atmospheric constituents—metals, volatile organic compounds and ammonia. J Indian Chem Soc 89:713–724

    CAS  Google Scholar 

  • Hoffmann MR, Jacob DJ (1984) In: Calvert JG (ed) SO2, NO and NO2 oxidation mechanisms. Atmospheric Considerations, Butterworth, Boston, pp 101–172

    Google Scholar 

  • Harris E, Sinha B, van Pinxteren D, Tilgner A, Fomba KW, Schneider J, Roth A, Gnauk T, Fahlbusch B, Mertes S et al (2013) Enhanced role of transition metal ion catalysis during in-cloud oxidation of SO2. Science 340:727–730

    Article  CAS  Google Scholar 

  • Hayon E, Treinin A, Wilf J (1972) Electronic spectra, photochemistry and autoxidation mechanism of the sulfite-bisulfite pyrosulfite systems. The SO2 -, SO3 -, SO4 - and SO5 - radicals. J Am Chem Soci 94:47–57

  • Herrmann H, Schaefer T, Tilgner A, Styler SA, Weller C, Teich M, Otto T (2015) Tropospheric aqueous-phase chemistry: kinetics, mechanisms, and its coupling to a changing gas phase. Chem Rev 115:4259–4334

    Article  CAS  Google Scholar 

  • Herrmann H, Hoffmann D, Schaefer T, Braeuer P, Tilgner A (2010) Tropospheric aqueous-phase free-radical chemistry: radical sources, spectra, reaction kinetics and prediction tools. ChemPhysChem 11:3796–3822

    Article  CAS  Google Scholar 

  • Huie RE, Neta P (1984) Chemical behaviour of SO3 and SO5 radicals in aqueous solutions. J Phys Chem 88:5665–5669

    Article  CAS  Google Scholar 

  • Huie RE, Neta P (1987) Rate constant for some oxidation of S(IV) by radical in aqueous solution. Atmos Environ 21:1743–1747

    Article  CAS  Google Scholar 

  • Kuo DTF, Krik DW, Jia CQ (2006) The chemistry of aqueous S(IV)-Fe-O2 system: state of the art. J Sulfur Chem 27:461–530

    Article  CAS  Google Scholar 

  • Lim J, Lim C, Yu LE (2009) Composition and size distribution of metals in diesel exhaust particulates. J Environ Monit 11:1614–1621

    Article  CAS  Google Scholar 

  • Madnavat PVS, Rani A, Sharma M, Prasad DSN, Gupta KS (1993) Role of surface and leached metal ion catalysis in autoxidation of sulfur(IV) in power plant fly ash suspensions. Atmos Environ 27A:1985–1991

    Article  Google Scholar 

  • Manoj SV, Sharma M, Gupta KS (1999) Role of cuprous oxide in autoxidation of aqueous sulfur dioxide and its atmospheric implications. Atmos Environ 33:1503–1512

    Article  CAS  Google Scholar 

  • Manoj SV, Singh R, Sharma M, Gupta KS (2000) Kinetics and mechanism of heterogeneous cadmium sulfide and homogenous manganese(II) catalyzed oxidation of sulfur(IV) by dioxygen in acetate buffered medium. Indian J Chem 39A:507–521

    CAS  Google Scholar 

  • Manoj SV, Mudgal PK, Gupta KS (2008) Kinetics of iron(III)-catalyzed autoxidation of sulfur(IV) in acetate buffered medium. Transition Met Chem 33:311–316

    Article  CAS  Google Scholar 

  • Martin LR, Hill MW, Tai AF, Good TW (1991) The iron catalyzed oxidation of sulfur(IV) in aqueous solution: differing effects of organics at high and low pH. J Geophys Res: Atmos 96(D2):3085–3097

    Article  CAS  Google Scholar 

  • Mazurek MA (2002) Molecular identification of organic compounds in atmospheric complex mixtures and relationships to atmospheric chemistry and sources. Environ Health Perspect 110

  • Maricq MM (2007) Chemical characterization of particulate emission form diesel engine. J Aerosol Sci 38:1079–1118

    Article  CAS  Google Scholar 

  • Mudgal PK, Sharma AK, Mishra CD, Bansal SP, Gupta KS (2008) Kinetics of ammonia and ammonium ion inhibition of the atmospheric oxidation of aqueous sulfur dioxide by oxygen. J Atmos Chem 61:31–55

    Article  CAS  Google Scholar 

  • Neta P, Huie RE, Ross AB (1988) Rate constants for inorganic radicals in aqueous solution. J Phy Chem Ref Data 17:1027–1284

    Article  CAS  Google Scholar 

  • Pasuik-Bronikowska W, Bronikowski T, Ulejczyk M (1997) Solubilization of organics in water coupled with sulfite autoxidation. Water Res 31:1767–1775

    Article  Google Scholar 

  • Pasuik-Bronikowska W, Bronikowski T, Ulejczyk M (1998) Chemical interactions of aqueous phase pollutants: sulfur dioxide and sobrerol. In: Schurath U, Roselieb R (eds) Proc. 2nd Workshop of the EUROTRAC-2 Subproject Chemical Mechanism Development, Forschungszentrum Karlsruhe, Karlsruhe, pp A12:1–4

  • Pasuik-Bronikowska W, Bronikowski T, Ulejczyk M (1999) Oscillations in the rate of S(IV) autoxidation inhibited by sobrerol. In: Pasuik-Bronikowska W, Bronikowski T, Ulejczyk M, Vogt LR, Axelsdottir G (eds) Proc. Joint workshop. Ford Forschungszentrum, Aachen, pp 195–198

    Google Scholar 

  • Pasiuk-Bronikowska W, Bronikowski T, Rudzinski KJ, Ziajka J (2000) Transformations of atmospheric constituents and pollutants induced by S(IV) autoxidation—chemistry and kinetics In: EUROTRAC-2 Annual Report. CMD Chemical Mechanism Development, Munich, pp 123–126

    Google Scholar 

  • Pasiuk-Bronikowska W, Bronikowska T, Ulejczyk M (2003a) Synergy in the autoxidation of S(IV) inhibited by phenolic compounds. J Phys Chem A 107:1742–1748

    Article  CAS  Google Scholar 

  • Pasiuk-Bronikowska W, Bronikowska T, Ulejczyk M (2003b) Inhibition of the S(IV) autoxidation in the atmosphere by secondary terpeinic compounds. J Atmos Chem 44:97–111

    Article  CAS  Google Scholar 

  • Podkrajsek B, Grgic I, Tursic J, Bercic G (2006) Influence of atmospheric carboxylic acids on catalytic oxidation of sulfur(IV). J Atmos Chem 54:103–120

    Article  CAS  Google Scholar 

  • Prasad DSN, Rani A, Madnavat PVS, Bhargava R, Gupta KS (1991) Kinetics of surface catalyzed oxidation of sulfur(IV) by dioxygen in aqueous suspensions of cobalt(II) oxide. J Mol Catal 69:395–405

    Article  Google Scholar 

  • Prasad DSN, Rani A, Gupta KS (1992) Surface-catalyzed autoxidation of sulfur(IV) in aqueous silica and copper(II) oxide suspensions. Environ Sci Technol 26:1361–1368

    Article  CAS  Google Scholar 

  • Prasad DSN, Rani A, Sharma M, Gupta KS (1994) Rates of autoxidation of sulfur(IV) in aqueous suspensions of limestone powder, implications for scrubber chemistry. Indian J Chem Technol 1:87–92

    CAS  Google Scholar 

  • Prasad DSN, Mehta RK, Parashar P, Madnawat PVS, Rani A, Singh U, Manoj SV, Bansal SP, Gupta KS (2003) Kinetics of surface-catalysed autoxidation of aqueous sulfur dioxide in cobalt(III) oxide suspensions. J Indian Chem Soc 80:391–394

    CAS  Google Scholar 

  • Rani A, Prasad DSN, Bhargava R, Gupta KS (1991) Dynamics of autoxidation of sulfur dioxide in aqueous suspensions of cadmium oxide. Bull Chem Soc Jpn 63:1995–1961

    Google Scholar 

  • Rani A, Prasad DSN, Madnawat PVS, Gupta KS (1992) The role of free fall atmospheric dust in catalyzing autoxidation of aqueous sulphur dioxide. Atmos Environ 26A:667–673

    Article  CAS  Google Scholar 

  • Rogge WF, Hildemann LM, Mazurek MA, Cass GR (1993) N Sources of fine organic aerosol. 3. Road dust, tire debris and organometallic brake lining dust: roads as sources and sinks. Environ Sci Technol 27:1892–1904

    Article  CAS  Google Scholar 

  • Rudizinski KJ (2004) Degradation of isoprene in the presence of sulphoxy radical anions. J Atmos Chem 48:191–216

    Article  Google Scholar 

  • Rudzinski KJ, Gmachowski L, Kuznietsova I (2009) Reactions of isoprene and sulphoxy radical-anions—a possible source of atmospheric organosulphites and organosulphates. Atmos Chem Phys 9:2129–2140

    Article  CAS  Google Scholar 

  • Saxena D, Sharma M, Rani A, Singh R, Gupta KS (1993) Kinetics of oxidation of aqueous sulfur dioxide by lead dioxide in aqueous suspensions. Indian J Environ Prot 15:575–579

    Google Scholar 

  • Saxena D, Sharma M, Rani A, Gupta KS (1995) Autoxidation of sulfur dioxide in aqueous fly ash suspensions. J Environ Sci Health Part A 30:1191–1210

    Google Scholar 

  • Schuetzle D (1983) Sampling of vehicle emissions for chemical analysis and biological testing. Environ Health Perspect 47:65–80

    Article  CAS  Google Scholar 

  • Schindelka J, Iinuma Y, Hoffmann D, Herrmann H (2013) Sulfate radical-initiated formation of isoprene-derived organosulfates in atmospheric aerosols. Faraday Discuss 165:237–259

    Article  CAS  Google Scholar 

  • Tobias HJ, Beving DE, Ziemann PJ (2001) Chemical analysis of diesel engine nanoparticles using a nano-DMA/thermal desorption particle beam mass spectrometer. Environ Sci Technol 35:2233–2243

    Article  CAS  Google Scholar 

  • Wang L-D, Yi Z, Ma Y-L, Ji-Ming H (2008) Intrinsic kinetics of sulfite oxidation with inhibitor of phenol. Huaxue Xuebao 66:2336–2340

    CAS  Google Scholar 

  • Wang L-D, Ma Y-L, Ji-Ming H, Yi Z (2009) Mechanism and kinetics of sulfite oxidation in the presence of ethanol. Ind Eng Chem Res 48:4307–4311

    Article  CAS  Google Scholar 

  • Wang YF, Huang KL, Li CT, Mi HH, Luo JH, Tsai PJ (2003) Emissions of fuel metals content from a diesel vehicle engine. Atmos Environ 37:4637–4643

    Article  CAS  Google Scholar 

  • Wang ZH, Hao ZP (2011) Particle size and shape of on-road suspended coarse dust in the Shijiazhuang City China. J Environ Sci Eng 5:21–27

    Google Scholar 

  • Westerholm R, Egeback KE (1994) Exhaust emissions from light and heavy duty vehicles: chemical composition, impact of exhaust after treatment and fuel parameters. Environ Health Perspect 102(Suppl 4):13–23

  • Wolf A, Deutsch F, Hoffmann P, Ortner HM (2000) The influence of oxalate on Fe-catalyzed S(IV) oxidation by oxygen in aqueous solution. J Atmos Chem 37:125–135

    Article  CAS  Google Scholar 

  • Wu X-q, Wu Z-b, Wang D-h (2004) Catalytic oxidation of calcium sulfite in solution/aqueous slurry. J Environ Sci (Beijing, China) 16:973–977

    CAS  Google Scholar 

  • Yang X-J, Yang L, Dong L, Xiang-Li L, Wei-Kang Y (2011) Kinetics of the [Fe(III)-EDTA]—reduction by sulfite under the catalysis of activated carbon. Energy Fuels 25:4248–4255

    Article  CAS  Google Scholar 

  • Ziajka J, Beer F, Warneck P (1994) Iron-catalyzed oxidation of bisulfite aqueous solution: evidence for a free radical chain mechanism. Atmos Environ 28:2549–2552

    Article  CAS  Google Scholar 

  • Ziajka J, Pasiuk-Bronikowska W (1999) Effect of α-pinene and cis-verbenol on the rate of S(IV) oxidation catalyzed by Fe. Edited by Borrell, Patricia M.; Borrell, Peter From Proceedings of EUROTRAC Symposium '98: Transport and Chemical Transformation in the Troposphere, Garmisch-Partenkirchen, Germany, Mar. 23–27, 1:756–764

  • Ziajka P, Pasiuk-Bronikowska W (2003) Autoxidation of sulfur dioxide in the presence of alcohols under conditions related to tropospheric aqueous phase. Atmos Environ 37:3913–3922

    Article  CAS  Google Scholar 

  • Ziajka J, Pasiuk-Bronikowska W (2005) Rate constants for atmospheric trace organics scavenging SO 4 in the Fe-catalysed autoxidation of S(IV). Atmos Environ 39:1431–1438

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The work was supported by SERB, Department of Science and Technology, Ministry of Science and Technology, Government of India, New Delhi, and CSIR New Delhi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Gupta.

Additional information

Responsible editor: Gerhard Lammel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meena, V.K., Dhayal, Y., Saxena, D. et al. The influence of diesel—truck exhaust particles on the kinetics of the atmospheric oxidation of dissolved sulfur dioxide by oxygen. Environ Sci Pollut Res 23, 17380–17392 (2016). https://doi.org/10.1007/s11356-016-6844-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6844-5

Keywords

Navigation