Abstract
Atrazine is an herbicide widely used in crops and has drawn attention due to potential pollution present in soil, sediment, water, and food. Since conventional methods are not potentially efficient to persistent degradation of organic compounds, new technology has been developed to remove them, especially practices utilizing advanced oxidation processes (AOPs). This work aims to evaluate the use of different energies (ultraviolet (UV), microwaves (MW), and radiations (MW-UV)) to the herbicide atrazine through the process of photo-oxidation. These systems found degradation rates of around 12 % (UV), 28 % (MW), and 83 % (MW-UV), respectively, with time intervals of 120 s. After the photolytic processes, the samples were analyzed at a wavelength scanning the range of 190 to 300 nm, where the spectral analysis of the signal was used to evaluate the degradation of atrazine and the appearance of some other peaks (degradation products). The spectrum evaluation resulting from photolytic processes gave rise to a new signal which was confirmed by chromatography. This spectrum indicated the possible pathway of atrazine degradation by the process of photolytic MW-UV, generating atrazine-2-hydroxy, atrazine-desethyl-2-hidroxy, and atrazine-desisopropyl-2-hydroxy. The process indicated that in all situations, chloride was present in the analytic structure and was substituted by a hydroxyl group, which lowered the toxicity of the compound through the photolytic process MW-UV. Chromatographic analysis ascertained these preliminary assessments using spectrophotometry. It was also significantly observed that the process can be optimized by adjusting the pH of the solution, which was evident by an improvement of 10 % in the rate of degradation when subjected to a pH solution equal to 8.37.






Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Basturk E, Karatas M (2015) Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. J Photochem Photobiol A Chem 299:67–72. doi:10.1016/j.jphotochem.2014.11.003
BRASIL (2013) Ministério da Saúde. Secretaria de Vigilância em Saúde. Monitoramento de agrotóxicos na água para consumo humano no Brasil, 2011. n. 44. Found in: http://bvsms.saude.gov.br/bvs/periodicos/boletim_epidemiologico_numero_10_2013.pdf. Acesso em 13 jan. 2015
Chamberlain E, Shi H, Wang T, Ma Y, Fulmer A, Adams C (2012) Comprehensive screening study of pesticide degradation via oxidation and hydrolysis. J Agric Food Chem 60:354–363. doi:10.1021/jf2033158
Chen H, Yang S, Yu K, Ju Y, Sun C (2011a) Effective photocatalytic degradation of Atrazine over titania-coated carbon nanotubes (CNTs) coupled with microwave energy. J Phys Chem A 115:3034–3041. doi:10.1021/jp109948n
Chen H, Bramanti E, Longo I, Onor M, Ferrari C (2011b) Oxidative decomposition of atrazine in water in the presence of hydrogen peroxide using an innovative microwave photochemical reactor. J Hazard Mater 186:1808–1815. doi:10.1016/j.jhazmat.2010.12.065
Chong, M. N., Jin, B., Chow, C. W. K., Saint, C. Recent developments in photocatalytic water treatment technology: a review. Water Research 44 (2010) 2997–3027. doi:10.1016/j.watres.2010.02.039.
Chu, W., Chan, K. H., Kwan, C. Y., Choi, K. Y. Degradation of atrazine by modified stepwise-Fenton’s processes.Chemosphere 67 (2007) 755–761. doi:10.1016/j.chemosphere.2006.10.039
Církva V, Relich S (2011a) Microwave photochemistry and photocatalysis. Part 1: principles and overview. Curr Org Chem 15:248–264
Církva V, Relich S (2011b) Microwave photochemistry. Applications in organic synthesis. Current organic chemistry. Mini-Reviews in Organic Chemistry 8:282–293
Coelho ERC, Vazzoler H, LEAL WP (2012) Using activated carbon for atrazine removal from public water supply. Eng Sanit Ambient 17(4):421–428
Dellamatrice PM, Costa LS, Marques AS, Viana MS, Araújo RS (2012) Degradação de agrotóxicos por fungos Basidiomicetos em solo agrícola contendo altos níveis de três produtos diferentes Pesticidas: r.ecotoxicol. e meio ambiente. Curitiba 22:7–16
He Y, Cheng H (2016) Degradation of N-Nitrosodimethylamine (NDMA) and its precursor Dimethylamine (DMA) in mineral micropores induced by microwave irradiation. Water Res 94:305–314
Hu E, Cheng H (2013) Impact of surface chemistry on microwave-induced degradation of atrazine in mineral micropores. Environmental Science Technology 47:533–541
Hu, E., Cheng, H. Hu, Y. Microwave-induced degradation of atrazine sorbed in mineral micropores. Environ. Sci. Technol.v. 46, p. 5067–76, 2012. doi:10.1021/es204519d
Hu, E., Cheng, H. Catalytic effect of transition metals on microwave induced degradation of atrazine in mineral micropores. Water research, 2014, v.57, 8–1 9. doi:10.1016/j.watres.2014.03.015.
Hu E, Hu Y, Cheng H (2015) Performance of a novel microwave-based treatment technology for atrazine removal and destruction: Sorbent reusability and chemical stability, and effect of water matrices. J Hazard Mater 299:444–452
Ibhadon, A. O., Fitzpatrick, P. Heterogeneous photocatalysis: recent advances and applications catalysts 2013, 3, 189–218. doi:10.3390/catal3010189
Javaroni, R. C. A., Landgraf, M. D. e Rezende, M. O. O. Comportamento dos Herbicidas Atrazina e Alaclor Aplicados em Solo Preparado para o Cultivo de Cana-de-Açúcar. Química Nov. 22 (1) 1999.
Jiménez M, Oller I, Maldonado MI, Peralta-Hernadez JM (2011) Solar photo-Fenton degradation of herbicides partially dissolved in water. Catal Today 161:214–220. doi:10.1016/j.cattod.2010.11.080
Klamerth, N., Miranda, N., Malato, S., Agüera, A., Fernández-Albam, A. R., Maldonado, I., Coronado, J. M.. Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2. Catalysis Today 144 (2009) 124–130. doi:10.1016/j.cattod.2009.01.024
Klán P, Literak J, Hájek M (1999) The electrodeless discharge lamp: a prospective tool for photochemistry. J Photochem Photobiol A Chem 128:145–149
Li, J., Hu, J., Xu, W., Ling, M., Yao, J. hydrolysis reaction mechanism in atrazine metabolism and prediction of its metabolites’ toxicities. J. Agric. Food Chem. v. 62, p. 4852–4863, 2014. doi:10.1021/jf501101q.
Line, M. R., Vasish, G., Chen, P., Angerhausen, D., Yung, Y.L. Thermochemical and photochemical kinetics in cooler hydrogen-dominated extrasolar planets: a methane-poor gj436b?. The Astrophysical Journal, September 1, 2011, 738:32 (14pp). doi:10.1088/0004-637x/738/1/32.
Luan J, Ma K, Wang S, Hu Z, Li Y, Pan B (2010) Research on photocatalytic degradation pathway and degradation mechanisms of organics. Curr Org Chem 14:645–682
Mahmud A, Freire RS (2007) Métodos emergentes para aumentar a eficiência do ozônio no tratamento de águas contaminadas. Quim Nov. 30(1):198–205
Martins LM (2011) 109f. Dissertação de Mestrado – Desenvolvimento e Meio Ambiente. Universidade Federal do Piauí, UFPI, Teresina
Moreira JC, Peres F, Simões AC, Pignati WA, Dores EC, Vieira SN, Strussman C, Mott T (2012) Ciência & Saúde Coletiva 17:1557–1568
Nakagawa, L. M. & De Andréa, M. M.. Degradação e formação de resíduos não-extraíveis ou ligados do herbicida atrazina em solo. Pesq. agropec. bras., Brasília, v.35, n.8, p.1509-1515, ago. 2000.
Nogueira RFP, Trovó AG, da Silva MRA, Villa RD (2007) Fundamentos e aplicações ambientais dos processos Fenton e Foto-Fenton. Quim Nov. 30(2):400–408
Parra, S., Stanca, S. E., Guasaquillo, I., Thampi, R.. Photocatalytic degradation of atrazine using suspended and supported TiO2. Applied Catalysis B: Environmental 51 (2004) 107–116. doi:10.1016/j.apcatb.2004.01.021.
Sanches, S., Crespo, M. T. B., Pereira, V. J. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research 44 (2010) 1809–1818. doi:10.1016/j.watres.2009.12.001.
Ta, N; Hong, J.; Liu, T.; Sun, C. Degradation of atrazine by microwave-assisted electrodeless discharge mercury lamp in aqueous solution. Journal of Hazardous Materials B138 (2006) 187–194. doi:10.1016/j.jhazmat.2006.05.050.
Tan, L. R.; Chen, L. Y.; Zhang, J.J; Luo, F.; Yang, H. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants. Ecotoxicology and Environmental Safety, 2015, v.119, 25–34. doi:10.1016/j.ecoenv.2015.04.035
U.S. Department of health and human services. Toxicological profile for Atrazine 2003. Found in: http://www.atsdr.cdc.gov/toxprofiles/tp153.pdf.Acesso em: 13 jan. 2015.
USEPA (2007) Chemical summary, Atrazine, U.S. EPA, toxicity and exposure assessment for children’s health. Found in: http://www.epa.gov/teach/chem_summ/Atrazine_summary.pdf. Acesso em: 1 jan. 2015
Yola, M. L. Eren, T. Atar, N. A novel efficient photocatalyst based on TiO2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. Chem. Engin. J. v. 250, p.288–294, 2014. doi:10.1016/j.cej.2014.03.116
Zhanqi G, Shaogui Y, Na T, Cheng S (2007) Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. J Hazard Mater 145:424–430. doi:10.1016/j.jhazmat.2006.11.042
Acknowledgements
The authors are thankful to the Fundação de Amparo a Pesquisa do Estado de Minas Gerais, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and to the Serviço Nacional de Aprendizagem Industrial de Minas Gerais (FIEMG/SENAI-MG) for their fellowship.
Author information
Authors and Affiliations
Corresponding author
Additional information
Responsible editor: Philippe Garrigues
Rights and permissions
About this article
Cite this article
Moreira, A.J., Pinheiro, B.S., Araújo, A.F. et al. Evaluation of atrazine degradation applied to different energy systems. Environ Sci Pollut Res 23, 18502–18511 (2016). https://doi.org/10.1007/s11356-016-6831-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11356-016-6831-x


