Skip to main content

Advertisement

Log in

Evaluation of atrazine degradation applied to different energy systems

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Atrazine is an herbicide widely used in crops and has drawn attention due to potential pollution present in soil, sediment, water, and food. Since conventional methods are not potentially efficient to persistent degradation of organic compounds, new technology has been developed to remove them, especially practices utilizing advanced oxidation processes (AOPs). This work aims to evaluate the use of different energies (ultraviolet (UV), microwaves (MW), and radiations (MW-UV)) to the herbicide atrazine through the process of photo-oxidation. These systems found degradation rates of around 12 % (UV), 28 % (MW), and 83 % (MW-UV), respectively, with time intervals of 120 s. After the photolytic processes, the samples were analyzed at a wavelength scanning the range of 190 to 300 nm, where the spectral analysis of the signal was used to evaluate the degradation of atrazine and the appearance of some other peaks (degradation products). The spectrum evaluation resulting from photolytic processes gave rise to a new signal which was confirmed by chromatography. This spectrum indicated the possible pathway of atrazine degradation by the process of photolytic MW-UV, generating atrazine-2-hydroxy, atrazine-desethyl-2-hidroxy, and atrazine-desisopropyl-2-hydroxy. The process indicated that in all situations, chloride was present in the analytic structure and was substituted by a hydroxyl group, which lowered the toxicity of the compound through the photolytic process MW-UV. Chromatographic analysis ascertained these preliminary assessments using spectrophotometry. It was also significantly observed that the process can be optimized by adjusting the pH of the solution, which was evident by an improvement of 10 % in the rate of degradation when subjected to a pH solution equal to 8.37.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Basturk E, Karatas M (2015) Decolorization of antraquinone dye Reactive Blue 181 solution by UV/H2O2 process. J Photochem Photobiol A Chem 299:67–72. doi:10.1016/j.jphotochem.2014.11.003

    Article  CAS  Google Scholar 

  • BRASIL (2013) Ministério da Saúde. Secretaria de Vigilância em Saúde. Monitoramento de agrotóxicos na água para consumo humano no Brasil, 2011. n. 44. Found in: http://bvsms.saude.gov.br/bvs/periodicos/boletim_epidemiologico_numero_10_2013.pdf. Acesso em 13 jan. 2015

  • Chamberlain E, Shi H, Wang T, Ma Y, Fulmer A, Adams C (2012) Comprehensive screening study of pesticide degradation via oxidation and hydrolysis. J Agric Food Chem 60:354–363. doi:10.1021/jf2033158

    Article  CAS  Google Scholar 

  • Chen H, Yang S, Yu K, Ju Y, Sun C (2011a) Effective photocatalytic degradation of Atrazine over titania-coated carbon nanotubes (CNTs) coupled with microwave energy. J Phys Chem A 115:3034–3041. doi:10.1021/jp109948n

    Article  CAS  Google Scholar 

  • Chen H, Bramanti E, Longo I, Onor M, Ferrari C (2011b) Oxidative decomposition of atrazine in water in the presence of hydrogen peroxide using an innovative microwave photochemical reactor. J Hazard Mater 186:1808–1815. doi:10.1016/j.jhazmat.2010.12.065

    Article  CAS  Google Scholar 

  • Chong, M. N., Jin, B., Chow, C. W. K., Saint, C. Recent developments in photocatalytic water treatment technology: a review. Water Research 44 (2010) 2997–3027. doi:10.1016/j.watres.2010.02.039.

  • Chu, W., Chan, K. H., Kwan, C. Y., Choi, K. Y. Degradation of atrazine by modified stepwise-Fenton’s processes.Chemosphere 67 (2007) 755–761. doi:10.1016/j.chemosphere.2006.10.039

  • Církva V, Relich S (2011a) Microwave photochemistry and photocatalysis. Part 1: principles and overview. Curr Org Chem 15:248–264

    Article  Google Scholar 

  • Církva V, Relich S (2011b) Microwave photochemistry. Applications in organic synthesis. Current organic chemistry. Mini-Reviews in Organic Chemistry 8:282–293

    Article  Google Scholar 

  • Coelho ERC, Vazzoler H, LEAL WP (2012) Using activated carbon for atrazine removal from public water supply. Eng Sanit Ambient 17(4):421–428

    Article  Google Scholar 

  • Dellamatrice PM, Costa LS, Marques AS, Viana MS, Araújo RS (2012) Degradação de agrotóxicos por fungos Basidiomicetos em solo agrícola contendo altos níveis de três produtos diferentes Pesticidas: r.ecotoxicol. e meio ambiente. Curitiba 22:7–16

    CAS  Google Scholar 

  • He Y, Cheng H (2016) Degradation of N-Nitrosodimethylamine (NDMA) and its precursor Dimethylamine (DMA) in mineral micropores induced by microwave irradiation. Water Res 94:305–314

    Article  CAS  Google Scholar 

  • Hu E, Cheng H (2013) Impact of surface chemistry on microwave-induced degradation of atrazine in mineral micropores. Environmental Science Technology 47:533–541

    Article  CAS  Google Scholar 

  • Hu, E., Cheng, H. Hu, Y. Microwave-induced degradation of atrazine sorbed in mineral micropores. Environ. Sci. Technol.v. 46, p. 5067–76, 2012. doi:10.1021/es204519d

  • Hu, E., Cheng, H. Catalytic effect of transition metals on microwave induced degradation of atrazine in mineral micropores. Water research, 2014, v.57, 8–1 9. doi:10.1016/j.watres.2014.03.015.

  • Hu E, Hu Y, Cheng H (2015) Performance of a novel microwave-based treatment technology for atrazine removal and destruction: Sorbent reusability and chemical stability, and effect of water matrices. J Hazard Mater 299:444–452

    Article  CAS  Google Scholar 

  • Ibhadon, A. O., Fitzpatrick, P. Heterogeneous photocatalysis: recent advances and applications catalysts 2013, 3, 189–218. doi:10.3390/catal3010189

  • Javaroni, R. C. A., Landgraf, M. D. e Rezende, M. O. O. Comportamento dos Herbicidas Atrazina e Alaclor Aplicados em Solo Preparado para o Cultivo de Cana-de-Açúcar. Química Nov. 22 (1) 1999.

  • Jiménez M, Oller I, Maldonado MI, Peralta-Hernadez JM (2011) Solar photo-Fenton degradation of herbicides partially dissolved in water. Catal Today 161:214–220. doi:10.1016/j.cattod.2010.11.080

    Article  Google Scholar 

  • Klamerth, N., Miranda, N., Malato, S., Agüera, A., Fernández-Albam, A. R., Maldonado, I., Coronado, J. M.. Degradation of emerging contaminants at low concentrations in MWTPs effluents with mild solar photo-Fenton and TiO2. Catalysis Today 144 (2009) 124–130. doi:10.1016/j.cattod.2009.01.024

  • Klán P, Literak J, Hájek M (1999) The electrodeless discharge lamp: a prospective tool for photochemistry. J Photochem Photobiol A Chem 128:145–149

    Article  Google Scholar 

  • Li, J., Hu, J., Xu, W., Ling, M., Yao, J. hydrolysis reaction mechanism in atrazine metabolism and prediction of its metabolites’ toxicities. J. Agric. Food Chem. v. 62, p. 4852–4863, 2014. doi:10.1021/jf501101q.

  • Line, M. R., Vasish, G., Chen, P., Angerhausen, D., Yung, Y.L. Thermochemical and photochemical kinetics in cooler hydrogen-dominated extrasolar planets: a methane-poor gj436b?. The Astrophysical Journal, September 1, 2011, 738:32 (14pp). doi:10.1088/0004-637x/738/1/32.

  • Luan J, Ma K, Wang S, Hu Z, Li Y, Pan B (2010) Research on photocatalytic degradation pathway and degradation mechanisms of organics. Curr Org Chem 14:645–682

    Article  CAS  Google Scholar 

  • Mahmud A, Freire RS (2007) Métodos emergentes para aumentar a eficiência do ozônio no tratamento de águas contaminadas. Quim Nov. 30(1):198–205

  • Martins LM (2011) 109f. Dissertação de Mestrado – Desenvolvimento e Meio Ambiente. Universidade Federal do Piauí, UFPI, Teresina

    Google Scholar 

  • Moreira JC, Peres F, Simões AC, Pignati WA, Dores EC, Vieira SN, Strussman C, Mott T (2012) Ciência & Saúde Coletiva 17:1557–1568

    Article  Google Scholar 

  • Nakagawa, L. M. & De Andréa, M. M.. Degradação e formação de resíduos não-extraíveis ou ligados do herbicida atrazina em solo. Pesq. agropec. bras., Brasília, v.35, n.8, p.1509-1515, ago. 2000.

  • Nogueira RFP, Trovó AG, da Silva MRA, Villa RD (2007) Fundamentos e aplicações ambientais dos processos Fenton e Foto-Fenton. Quim Nov. 30(2):400–408

  • Parra, S., Stanca, S. E., Guasaquillo, I., Thampi, R.. Photocatalytic degradation of atrazine using suspended and supported TiO2. Applied Catalysis B: Environmental 51 (2004) 107–116. doi:10.1016/j.apcatb.2004.01.021.

  • Sanches, S., Crespo, M. T. B., Pereira, V. J. Drinking water treatment of priority pesticides using low pressure UV photolysis and advanced oxidation processes. Water Research 44 (2010) 1809–1818. doi:10.1016/j.watres.2009.12.001.

  • Ta, N; Hong, J.; Liu, T.; Sun, C. Degradation of atrazine by microwave-assisted electrodeless discharge mercury lamp in aqueous solution. Journal of Hazardous Materials B138 (2006) 187–194. doi:10.1016/j.jhazmat.2006.05.050.

  • Tan, L. R.; Chen, L. Y.; Zhang, J.J; Luo, F.; Yang, H. A collection of cytochrome P450 monooxygenase genes involved in modification and detoxification of herbicide atrazine in rice (Oryza sativa) plants. Ecotoxicology and Environmental Safety, 2015, v.119, 25–34. doi:10.1016/j.ecoenv.2015.04.035

  • U.S. Department of health and human services. Toxicological profile for Atrazine 2003. Found in: http://www.atsdr.cdc.gov/toxprofiles/tp153.pdf.Acesso em: 13 jan. 2015.

  • USEPA (2007) Chemical summary, Atrazine, U.S. EPA, toxicity and exposure assessment for children’s health. Found in: http://www.epa.gov/teach/chem_summ/Atrazine_summary.pdf. Acesso em: 1 jan. 2015

  • Yola, M. L. Eren, T. Atar, N. A novel efficient photocatalyst based on TiO2 nanoparticles involved boron enrichment waste for photocatalytic degradation of atrazine. Chem. Engin. J. v. 250, p.288–294, 2014. doi:10.1016/j.cej.2014.03.116

  • Zhanqi G, Shaogui Y, Na T, Cheng S (2007) Microwave assisted rapid and complete degradation of atrazine using TiO2 nanotube photocatalyst suspensions. J Hazard Mater 145:424–430. doi:10.1016/j.jhazmat.2006.11.042

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Fundação de Amparo a Pesquisa do Estado de Minas Gerais, Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), and to the Serviço Nacional de Aprendizagem Industrial de Minas Gerais (FIEMG/SENAI-MG) for their fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian P. G. Freschi.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreira, A.J., Pinheiro, B.S., Araújo, A.F. et al. Evaluation of atrazine degradation applied to different energy systems. Environ Sci Pollut Res 23, 18502–18511 (2016). https://doi.org/10.1007/s11356-016-6831-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6831-x

Keywords