Skip to main content

Advertisement

Log in

OptiPhy, a technical-economic optimisation model for improving the management of plant protection practices in agriculture: a decision-support tool for controlling the toxicity risks related to pesticides

  • Fate and impact of pesticides: new directions to explore
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The health, environmental and socio-economic issues related to the massive use of plant protection products are a concern for all the stakeholders involved in the agricultural sector. These stakeholders, including farmers and territorial actors, have expressed a need for decision-support tools for the management of diffuse pollution related to plant protection practices and their impacts. To meet the needs expressed by the public authorities and the territorial actors for such decision-support tools, we have developed a technical-economic model “OptiPhy” for risk mitigation based on indicators of pesticide toxicity risk to applicator health (IRSA) and to the environment (IRTE), under the constraint of suitable economic outcomes. This technical-economic optimisation model is based on linear programming techniques and offers various scenarios to help the different actors in choosing plant protection products, depending on their different levels of constraints and aspirations. The health and environmental risk indicators can be broken down into sub-indicators so that management can be tailored to the context. This model for technical-economic optimisation and management of plant protection practices can analyse scenarios for the reduction of pesticide-related risks by proposing combinations of substitution PPPs, according to criteria of efficiency, economic performance and vulnerability of the natural environment. The results of the scenarios obtained on real ITKs in different cropping systems show that it is possible to reduce the PPP pressure (TFI) and reduce toxicity risks to applicator health (IRSA) and to the environment (IRTE) by up to approximately 50 %.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. RAP: Réseau d’Avertissements Phytosanitaires (plant protection product warning network)

  2. BETSY: web-based system for the distribution of advice for weeding sugar beet, created by the French Technical Sugar Beet Institute, http://www.itbfr.org/?d=23541.

  3. PhytoChoix: software was designed by the team of the Sustainable Agriculture Research Unit INPL-ENSAIA-INRA Nancy-Colmar, France, with the help of the Association for Agricultural Revival in Alsace, France (ARAA), and created at the request of the Technical Institute of Vine and Wine (ITV France) and the Interprofessional Committee of Champagne Wine (CIVC France), http://lae.univ-lorraine.fr/fileadmin/public/agridur/pdf/Texte_integral.pdf

  4. TRam: research project approved in September 2010, funded by ONEMA. Its objectives were to develop a methodology for testing the agro-environmental and technical-economic impact of an integrated reduction in the use of pesticides, taking into account the different levers of action from field level to catchment area level with weightings to take account of environmental specificities. http://www.programmepesticides.fr/Pages-projets/APR-2009/TRam.

  5. e-phy: http://e-phy.agriculture.gouv.fr/

  6. EToPhy software (2011), APP deposit no.: IDDN.FR.001.060017.000.D.C.2011.000.31500

  7. http://www.midimed.cerfrance.fr/page/referencesecono-midimed

  8. Agrileader: http://www.agrileader.fr/

  9. fenaco-LANDI: http://www.productionvegetale.ch/assortiments-phyto.html

  10. Arvalis: http://www.fiches.arvalis-infos.fr/

  11. Method for calculating reference TFIs within the framework of the DEPHY network of farms (DEPHY = Démonstration, Expérimentation et Production de références sur les systèmes économes en PHYtosanitaires), in the framework of France’s Ecophyto 2018 plan, http://agriculture.gouv.fr/telecharger/42569?token=161cae798519e0a87736f980dc4a2bd5

References

  • Aktar MW, Sengupta D, Chowdhury A (2009) Impact of pesticides use in agriculture: their benefits and hazards. Interdiscip Toxicol 2:1–12. doi:10.2478/v10102-009-0001-7

    Article  Google Scholar 

  • Alvarez S, Paas W, Descheemaeker K, Tittonell P, Groot JCJ (2014) Constructing typologies, a way to deal with farm diversity: general guidelines for the humid tropics. Report for the CGIAR Research Program on Integrated Systems for the Humid Tropics. Plant Sciences Group, Wageningen University, the Netherlands

    Google Scholar 

  • Andersen E, Elbersen B, Godeschalk F, Verhoog D (2007) Farm management indicators and farm typologies as a basis for assessments in a changing policy environment. J Environ Manag 82:353–362. doi:10.1016/j.jenvman.2006.04.021

    Article  Google Scholar 

  • Ayadi H (2013) Outils de gestion de la pollution phytosanitaire diffuse au niveau d’un territoire : cas d’application à la zone humide Ramsar de la Merja Zerga au Maroc. Thèse de doctorat en géographie et aménagement de l’espace et en agronomie, cotutelle UPV Montpellier 3 et CEDoc-IAV Hassan II Rabat

  • Ayadi H, Le Bars M, Le Grusse P, Mandart E, Fabre J, Bouaziz A, Bord JP (2014) SimPhy: a simulation game to lessen the impact of phytosanitaries on health and the environment-the case of Merja Zerga in Morocco. Environ Sci Pollut Res 21:4950–4963. doi:10.1007/s11356-013-2244-2

    Article  CAS  Google Scholar 

  • Bartolini F, Bazzani GM, Gallerani V, Raggi M, Viaggi D (2007) The impact of water and agriculture policy scenarios on irrigated farming systems in Italy: an analysis based on farm level multi-attribute linear programming models. Agric Syst 93:90–114. doi:10.1016/j.agsy.2006.04.006

    Article  Google Scholar 

  • Berbel J, Gomez-Limon JA (2000) The impact of water-pricing policy in Spain: an analysis of three irrigated areas. Agric Water Manag 43:219–238. doi:10.1016/s0378-3774(99)00056-6

    Article  Google Scholar 

  • Biarnès A, Bailly JS, Boissieux Y (2009) Identifying indicators of the spatial variation of agricultural practices by a tree partitioning method: the case of weed control practices in a vine growing catchment. Agric Syst 99:105–116

    Article  Google Scholar 

  • Blair A, Ritz B, Wesseling C, Freeman LB (2015) Pesticides and human health. Occup Environ Med 72:81–82. doi:10.1136/oemed-2014-102454

    Article  Google Scholar 

  • Bockstaller C, Girardin P (2003) How to validate environmental indicators. Agric Syst 76:639–653. doi:10.1016/s0308-521x(02)00053-7

    Article  Google Scholar 

  • Bockstaller C, Guichard L, Makowski D, Aveline A, Girardin P, Plantureux S (2008) Agri-environmental indicators to assess cropping and farming systems. A review. Agron Sustain Dev 28:139–149. doi:10.1051/agro:2007052

    Article  Google Scholar 

  • Bockstaller C, Guichard L, Keichinger O, Girardin P, Galan M-B, Gaillard G (2009) Comparison of methods to assess the sustainability of agricultural systems. A review. Agron Sustain Dev 29:223–235. doi:10.1051/agro:2008058

    Article  Google Scholar 

  • Bohnen NI, Kurland LT (1995) Brain-tumor and exposure to pesticides in humans—a review of the epidemiologic data. J Neurol Sci 132:110–121. doi:10.1016/0022-510x(95)00151-q

    Article  CAS  Google Scholar 

  • Boussard JM and Daudin JJ (1988) La programmation linéaire dans les modèles de production Actualités Scientifiques et Agronomiques de l’INRA, vol 14. Masson, Paris

  • Boussard JM, Boussemart JP, Flichman G, Jacquet F, Lefer HB (1997) Les effets de la réforme de la Pac sur les exploitations de grande culture [Changements techniques et renforcement des spécialisations régionales]. Econ Rural 239:20–29

    Article  Google Scholar 

  • Bouyssou D, Marchant T, Pirlot M, Perny P, Tsoukiàs A, Vincke P (2006) Evaluation and decision models: stepping stones for the analyst. Springer, New York

    Google Scholar 

  • Bouzit AM, Rieu T, Rio P (1994) Modélisation du comportement des exploitants agricoles tenant compte du risque : application du MOTAD généralisé. Econ Rural 220–221:69–73

    Article  Google Scholar 

  • Calvet R (2005) Les pesticides dans le sol: conséquences agronomiques et environnementales. France Agricole Editions, Paris

    Google Scholar 

  • Capillon A (1993) Typologie des exploitations agricoles. Contribution à l’étude régionale des problèmes techniques. Thèse de doctorat : INA P-G, Paris

  • Charbonnier E, Ronceux A, Carpentier AS, Soubelet H, Barriuso E (2015) Pesticides: des impacts aux changements de pratiques. Editions Quae, Paris

    Google Scholar 

  • Colin F (2000) Approche spatiale de la pollution chronique des eaux de surface par les produits phytosanitaires cas de l’atrazine dans le bassin versant de Sousson (Gers, France). Thèse de doctorat, spécialité science de l’eau. UMR “Système et Structure Spatiaux”, CEMAGREF/ENGREF, Montpellier

  • Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B (2009) Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the Central Valley of California. Am J Epidemiol 169:919–926. doi:10.1093/aje/kwp006

    Article  Google Scholar 

  • Daloglu I, Nassauer JI, Riolo RL, Scavia D (2014) Development of a farmer typology of agricultural conservation behavior in the American Corn Belt. Agric Syst 129:93–102. doi:10.1016/j.agsy.2014.05.007

    Article  Google Scholar 

  • Damalas CA, Eleftherohorinos IG (2011) Pesticide exposure, safety issues, and risk assessment indicators. Int J Environ Res Public Health 8:1402–1419

    Article  CAS  Google Scholar 

  • Deffontaines JP, Brossier J (2000) Système agraire et qualité de l’eau. Efficacité d’un concept et construction négociée d’une recherche. Nat Sci Soc 8:14–25

    Article  Google Scholar 

  • Devillers J, Farret R, Girardin P, Rivière JL, Soulas G (2005) Indicateurs pour évaluer les risques liés à l’utilisation des pesticides. Lavoisier Tec et Doc, Paris

    Google Scholar 

  • Fevery D, Houbraken M, Spanoghe P (2016) Pressure of non-professional use of pesticides on operators, aquatic organisms and bees in Belgium. Sci Total Environ 550:514–521

    Article  CAS  Google Scholar 

  • Graveline N, Rinaudo JD (2007) Constructing scenarios of agricultural diffuse pollution using an integrated hydro-economic modelling approach. Eur Water 17:3–16

    Google Scholar 

  • Graveline N, Rinaudo JD, Loubier S, Segger V (2009) L’évolution de la pollution agricole des eaux souterraines: une approche par couplage de modèles économiques et biophysiques. Econ Rural 310:22–39

    Article  Google Scholar 

  • Hallenbeck WH, Cunningham-Burns KM (1985) Pesticides and human health. Springer, Dordrecht

    Book  Google Scholar 

  • Janssen S, Van Ittersum MK (2007) Assessing farm innovations and responses to policies: a review of bio-economic farm models. Agric Syst 94:622–636. doi:10.1016/j.agsy.2007.03.001

    Article  Google Scholar 

  • Jorgensen LN, Noe E, Langvad AM, Jensen JE, Orum JE, Rydahl P (2007) Decision support systems: barriers and farmers’ need for support. Bull OEPP/EPPO Bull 37:374–377

    Article  Google Scholar 

  • Kempen M, Elbersen BS, Staritsky I, Andersen E, Heckelei T (2011) Spatial allocation of farming systems and farming indicators in Europe. Agric Ecosyst Environ 142:51–62. doi:10.1016/j.agee.2010.08.001

    Article  Google Scholar 

  • Kerselaers E, Cock LD, Lauwers L, Huylenbroeck GV (2007) Modelling farm-level economic potential for conversion to organic farming. Agric Syst 94:671–682

    Article  Google Scholar 

  • Laganier R, Villalba B, Zuindeau B (2002) Le développement durable face au territoire : éléments pour une recherche pluridisciplinaire. Développement durable et territoires doi:10.4000/developpementdurable.774. http://developpementdurable.revues.org/774

  • Landais E (1996) Typologies d’exploitations agricoles. Nouvelles questions, nouvelles méthodes. Econ Rural 236:3–15

    Article  Google Scholar 

  • Landais E (1998) Modelling farm diversity new approaches to typology building in France. Agric Syst 58:505–527. doi:10.1016/s0308-521x(98)00065-1

    Article  Google Scholar 

  • Le Bellec F, Vélu A, Fournier P, Le Squin S, Michels T, Tendero A, Bockstaller C (2015) Helping farmers to reduce herbicide environmental impacts. Ecol Indic 54:207–216

    Article  Google Scholar 

  • Le Grusse P, Belhouchette H, Le Bars M, Carmona G, Attonaty J (2006) Participative modelling to help collective decision-making in water allocation and nitrogen pollution: application to the case of the Aveyron-Lere Basin. Int J Agric Resour Gov Ecol 5:247–271

    Google Scholar 

  • Lescot JM, Bordenave P, Petit K, Leccia O (2013) A spatially-distributed cost-effectiveness analysis framework for controlling water pollution. Environ Model Softw 41:107–122

    Article  Google Scholar 

  • Louhichi K, Kanellopoulos A, Janssen S, Flichman G, Blanco M, Hengsdijk H, Heckelei T, Berentsen P, Lansink AO, Van Ittersum M (2010) FSSIM, a bio-economic farm model for simulating the response of EU farming systems to agricultural and environmental policies. Agric Syst 103:585–597. doi:10.1016/j.agsy.2010.06.006

    Article  Google Scholar 

  • Martin E, Gascoin S, Grusson Y, Murgue C, Bardeau M, Anctil F, Ferrant S, Lardy R, Le Moigne P, Leenhardt D, Rivalland V, Sánchez Pérez J-M, Sauvage S, Therond O (2016) On the use of hydrological models and satellite data to study the water budget of river basins affected by human activities: examples from the Garonne Basin of France. Surv Geophys 37:223–247

    Article  Google Scholar 

  • Mghirbi O, Ellefi K, Grusse P, Mandart E, Fabre J, Ayadi H, Bord JP (2015) Assessing plant protection practices using pressure indicator and toxicity risk indicators: analysis of the relationship between these indicators for improved risk management, application in viticulture. Environ Sci Pollut Res 22:8058–8074

    Article  Google Scholar 

  • Murgue C, Therond O, Leenhardt D (2015) Toward integrated water and agricultural land management: participatory design of agricultural landscapes. Land Use Policy 45:52–63

    Article  Google Scholar 

  • Norsworthy JK, Ward SM, Shaw DR, Llewellyn RS, Nichols RL, Webster TM, Bradley KW, Frisvold G, Powles SB, Burgos NR, Witt WW, Barrett M (2012) Reducing the risks of herbicide resistance: best management practices and recommendations. Weed Sci 60:31–62. doi:10.1614/ws-d-11-00155.1

    Article  CAS  Google Scholar 

  • Perrot C (1990) Typologie d’exploitations construite par agrégation autour de pôles définis à dire d’expert. Proposition méthodologique et premiers résultats obtenus en Haute-Marne. Prod Anim 3:51–66

    Google Scholar 

  • Perrot C, Pierret P, Landais E (1995) L’analyse des trajectoires des exploitations agricoles. Une méthode pour actualiser les modèles typologiques et étudier l’évolution de l’agriculture locale. Econ Rural 228:35–47

    Article  Google Scholar 

  • Pingali PL, Roger PA (1995) Impact of pesticides on farmer health and the rice environment. Springer, New York

    Book  Google Scholar 

  • Pingault N, Pleyber E, Champeaux C, Guichard L, Omon B (2009) Produits phytosanitaires et protection intégrée des cultures: l’indicateur de fréquence de traitement (IFT). Notes et études socio-économiques 32:61–94

    Google Scholar 

  • Ravier C, Prost L, Jeuffroy MH, Wezel A, Paravano L, Reau R (2015) Multi-criteria and multi-stakeholder assessment of cropping systems for a result-oriented water quality preservation action programme. Land Use Policy 42:131–140

    Article  Google Scholar 

  • Reidsma P, Ewert F, Lansink AO, Leemans R (2010) Adaptation to climate change and climate variability in European agriculture: the importance of farm level responses. Eur J Agron 32:91–102. doi:10.1016/j.eja.2009.06.003

    Article  Google Scholar 

  • Reidsma P, König H, Feng S, Bezlepkina I, Nesheim I, Bonin M, Sghaier M, Purushothamanh S, Sieberb S, Van Ittersum MK, Brouwerd F (2011) Methods and tools for integrated assessment of land use policies on sustainable development in developing countries. Land Use Policy 28:604–617. doi:10.1016/j.landusepol.2010.11.009

    Article  Google Scholar 

  • Réseau d’Avertissements Phytosanitaires (RAP) (2009) Protégeons les abeilles des pesticides. Bulletin d’information, Ordre Général 02 http://www.agrireseau.qc.ca/Rap/documents/b02gen09.pdf

  • Reus J, Leendertse P, Bockstaller C, Fomsgaard I, Gutsche V, Lewis K, Nilsson C, Pussemier L, Trevisan M, Van der Werf H, Alfarrova F, Blümel S, Isart J, McGrath D, Seppälä T (2002) Comparison and evaluation of eight pesticide environmental risk indicators developed in Europe and recommendations for future use. Agric Ecosyst Environ 90:177–187. doi:10.1016/s0167-8809(01)00197-9

    Article  Google Scholar 

  • Roussary A, Salles D, Busca D, Dumont A, Carpy-Goulard F (2013) Pratiques phytosanitaires en agriculture et environnement: des tensions irréductibles? Econ Rural 333:67–80

    Article  Google Scholar 

  • Samuel O, Dion S, ST-Laurent L, April MH (2012) Indicateur de risque des Pesticides du Québec –IRPeQ – Santé et environnement. Québec : ministère de l’Agriculture, des Pêcheries et de l’Alimentation/ministère du Developpement durable, de l’Environnement et des Parcs/Institut national de santé publique du Québec, 48 p. [online] URL:http://www.inspq.qc.ca/pdf/publications/1504_IndicRisquesPesticides_2eEdition.pdf

  • Shtienberg D (2000) Modelling: the basis for rational disease management. Crop Prot 19:747–752. doi:10.1016/s0261-2194(00)00099-5

    Article  Google Scholar 

  • Swartjes FA, Rutgers M, Lijzen JPA, Janssen PJCM, Otte PF, Wintersen A, Brand E, Posthuma L (2012) State of the art of contaminated site management in The Netherlands: policy framework and risk assessment tools. Sci Total Environ 427:1–10. doi:10.1016/j.scitotenv.2012.02.078

    Article  Google Scholar 

  • Testud F, Grillet JP, Nisse C (2007) Effets à long terme des produits phytosanitaires : le point sur les données épidémiologiques récentes. Arch Mal Prof Environ 68:394–401. doi:10.1016/s1775-8785(07)73890-0

    Google Scholar 

  • Thompson HM (2010) Risk assessment for honey bees and pesticides—recent developments and ‘new issues’. Pest Manag Sci 66:1157–1162. doi:10.1002/ps.1994

    Article  CAS  Google Scholar 

  • Trabelsi M, Mandart E, Le Grusse P, Bord J-P (2016) How to measure the agroecological performance of farming in order to assist with the transition process. Environ Sci Pollut Res Int 23:139–156. doi:10.1007/s11356-015-5680-3

    Article  Google Scholar 

  • Trevisan M, Di Guardo A, Balderacchi M (2009) An environmental indicator to drive sustainable pest management practices. Environ Model Softw 24:994–1002. doi:10.1016/j.envsoft.2008.12.008

    Article  Google Scholar 

  • Valbuena D, Verburg PH, Bregt AK (2008) A method to define a typology for agent-based analysis in regional land-use research. Agric Ecosyst Environ 128:27–36. doi:10.1016/j.agee.2008.04.015

    Article  Google Scholar 

  • Van der Werf HMG (1996) Assessing the impact of pesticides on the environment. Agric Ecosyst Environ 60:81–96. doi:10.1016/s0167-8809(96)01096-1

    Article  Google Scholar 

  • Van Dijk HFG, Van Pul WAJ, De Voogt P (1999) Fate of pesticides in the atmosphere: implications for environmental risk assessment. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Van Ittersum MK, Ewert F, Heckelei T, Wery J, Alkan Olsson J, Andersen E, Bezlepkina I, Brouwer F, Donatelli M, Flichman G, Olsson L, Rizzoli AE, Van der Wal T, Wien JE, Wolf J (2008) Integrated assessment of agricultural systems—a component-based framework for the European Union (SEAMLESS). Agric Syst 96:150–165. doi:10.1016/j.agsy.2007.07.009

    Article  Google Scholar 

  • Vasileiadis VP, Sattin M, Otto S, Veres A, Pálinkás Z, Ban R, Pons X, Kudsk P, Van der Weide R, Czembor F, Moonen AC, Kiss J (2011) Crop protection in European maize-based cropping systems: current practices and recommendations for innovative Integrated Pest Management. Agric Syst 104:533–540. doi:10.1016/j.agsy.2011.04.002

    Article  Google Scholar 

  • Vernier F, Miralles A, Pinet F, Carluer N, Gouy V, Molla G, Petit K (2013) EIS pesticides: an environmental information system to characterize agricultural activities and calculate agro-environmental indicators at embedded watershed scales. Agric Syst 122:11–21

    Article  Google Scholar 

  • Wilkerson GG, Wiles LJ, Bennett AC (2002) Weed management decision models: pitfalls, perceptions, and possibilities of the economic threshold approach. Weed Sci 50:411–424. doi:10.1614/0043-1745(2002)050[0411:wmdmpp]2.0.co;2

    Article  CAS  Google Scholar 

  • World Health Organization (1990) Public health impact of pesticides used in agriculture. WHO, Genève

    Google Scholar 

  • Zahm F (2003) Méthodes de diagnostic des exploitations agricoles et indicateurs : panorama et cas particuliers appliqués à l’évaluation des pratiques phytosanitaires. Ingénieries 33:13–34

    Google Scholar 

  • Zahm F, Vernier F, Saudubray F, Peyrey C, Petit K, Bockstaller C, Girardin P, Hubert A, Da Costa JP (2009) Évaluation des modules eaux de surface de quatre indicateurs phytosanitaires (ADSCOR, EIQ, EPRIP, I-PHY) en bassin viticole : premiers résultats issus d’un test appliqué aux pratiques phytosanitaires du bassin du Ruiné (Charente). In: Pesticides et Environnement. INRA, Villenave d’Ornon, pp 128–140

    Google Scholar 

Download references

Acknowledgments

This work has been carried out under the auspices of the TRam research project “Managing Toxicity in the Ramsar region” (Ecophyto 2018 Plan), and we gratefully acknowledge the financial support provided through the French Ministry of Ecology, Sustainable Development and Energy’s call for pesticide research projects managed by ONEMA (French National Agency for Water and Aquatic Environments). In addition, this work has been supported by the Languedoc-Roussillon Region Laboratory’s ARPE programme. We are also grateful to the Hérault Chamber of Agriculture and the Experimental Horticultural Centre at Marsillargues (CEHM) and the Mixed Syndicate of the Basin de l’Or (SYMBO), Hérault, Languedoc-Roussillon, for their support and cooperation during the project. We thank the Ministry of Higher Education and Scientific Research in Tunisia and CIHEAM-IAMM for providing financial support for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oussama MGHIRBI.

Additional information

Responsible editor: Philippe Garrigues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MGHIRBI, O., LE GRUSSE, P., FABRE, J. et al. OptiPhy, a technical-economic optimisation model for improving the management of plant protection practices in agriculture: a decision-support tool for controlling the toxicity risks related to pesticides. Environ Sci Pollut Res 24, 6951–6972 (2017). https://doi.org/10.1007/s11356-016-6775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6775-1

Keywords

Navigation