Skip to main content
Log in

Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Cadmium (Cd) pollution is present in the world over especially in the industrialized parts of the world. To reduce Cd accumulation in various crops especially food crops, alleviating agents such as reduced glutathione (GSH) can be applied, which are capable either to exclude or to sequester Cd contamination. This study investigated the leaf-based spatial distribution of physiological, metabolic, and microstructural changes in two cotton cultivars (Coker 312 and TM-1) under GSH-mediated Cd stress using single levels of Cd (50 μM) and GSH (50 μM) both separately and in mix along with control. Results showed that GSH revived the morphology and physiology of both cotton cultivars alone or in mix with Cd. Cd uptake was enhanced in all segments of leaf and whole leaf upon the addition of GSH. GSH alleviated Cd-induced reduction in the photosynthetic pigment compositions and chlorophyll a fluorescence parameters. Mean data of biomarkers (2,3,5-triphenyltetrazolium (TTC), total soluble protein (TSP), malondialdehyde (MDA), hydrogen peroxide (H2O2)) revealed the adverse effects of Cd stress on leaf segments of both cultivars, which were revived by GSH. The oxidative metabolism induced by Cd stress was profoundly influenced by exogenous GSH application. The microstructural alterations were mainly confined to chloroplastic regions of leaves under Cd-stressed conditions, which were greatly revived upon the GSH addition. As a whole, Cd stress greatly affected TM-1 as compared to Coker 312. These results suggest a positive role of GSH in alleviating Cd-mediated changes in different leaf sections of cotton cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahammed GJ, Choudhary SP, Chen S, Xia X, Shi K, Zhou Y, Yu Y (2012) Role of brassinosteroids in alleviation of phenanthrene–cadmium co-contamination-induced photosynthetic inhibition and oxidative stress in tomato. J Exp Bot 63:695–709

    Article  Google Scholar 

  • Ahsan N, Renault J, Komatsu S (2009) Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteom 9:2602–2621

    Article  CAS  Google Scholar 

  • Anwaar SA, Ali S, Ishaque W, Farid M, Farooq MA, Najeeb U, Abbas F, Sharif M (2014) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollu Res. doi:10.1007/s11356-014-3938-9

    Google Scholar 

  • Aravind P, Prasad MNV (2005) Cadmium–zinc interactions in a hydroponic system using Ceratophyllum demersum L.: adaptive ecophysiology, biochemistry and molecular toxicology, Braz. J. Plant Physiol 17:3–20

    CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomaro ML (2005) Cadmium toxicity in plants. Braz J Plant Physiol 17:21–34

    Article  CAS  Google Scholar 

  • Bernstein N, Shoresh M, Xu Y, Huang B (2010) Involvement of the plant antioxidative response in the differential growth sensitivity to salinity of leaves vs roots during cell development. Free Radical Biol Med 49:1161–1171

    Article  CAS  Google Scholar 

  • Bradford NM (1976) Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein–dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Cai Y, Cao F, Wei K, Zhang GP, Wu FB (2011) Genotypic dependent effect of exogenous glutathione on Cd-induced changes in proteins, ultrastructure and antioxidant defense enzymes in rice seedlings. J Hazard Mater 192:1056–1066

    Article  CAS  Google Scholar 

  • Chaffei C, Pageau K, Suzuki A, Gouia H, Ghorbel HM, Mascalaux-Daubresse C (2004) Cadmium toxicity induced changes in nitrogen management in Lycopersicon esculentum leading to a metabolic safeguard through an amino acid storage strategy. Plant Cell Physiol 45:1681–1693

    Article  CAS  Google Scholar 

  • Chen F, Wang F, Wu F, Mao W, Zhang G, Zhou M (2010) Modulation of exogenous glutathione in antioxidant defense system against Cd stress in the two barley genotypes differing in Cd tolerance. Plant Physiol Biochem 48:663–672

    Article  CAS  Google Scholar 

  • Cherkasov AS, Taylor C, Sokolova IM (2010) Seasonal variation in mitochondrial responses to cadmium and temperature in eastern oysters Crassostrea virginica (Gmelin) from different latitudes. Aquat Toxicol 97:68–78

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochim 88:1707–1719

    Article  CAS  Google Scholar 

  • Cosio C, DeSantis L, Frey B, Diallo S, Keller C (2005) Cadmium distribution in leaves of Thlaspi caerulescens. J Exp Bot 56:765–775

    Article  CAS  Google Scholar 

  • Cosio C, Vollenweider P, Keller C (2006) Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): I. Macrolocalization and phytotoxic effects of cadmium. Environ Exp Bot 58:64–74

    Article  CAS  Google Scholar 

  • Daud MK, Sun YQ, Dawood M, Hayat Y, Variath MT, Wu YX, Raziuddin M, Salahuddin U, Najeeb U, Zhu SJ (2009a) Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. J Hazard Mater 161:463–473

    Article  CAS  Google Scholar 

  • Daud MK, Variath MT, Ali S, Najeeb U, Jamil M, Hayat Y, Dawood M, Khan MI, Zaffar M, Cheema SA, Tong XH, Zhu SJ (2009b) Cadmium-induced ultramorphological and physiological changes in leaves of two transgenic cotton cultivars and their wild relative. J Hazard Mater 168:614–625

    Article  CAS  Google Scholar 

  • Daud MK, Mei L, Ali B, Chen Y, Cheng X, Zhu SJ (2013) Cadmium-induced upregulation of lipid peroxidation and reactive oxygen species caused physiological, biochemical and ultra-structural changes in cotton seedlings. Biomed Res Interna. doi:10.1155/2013/374063

    Google Scholar 

  • Daud MK, Quiling H, Lie M, Ali B, Zhu SJ (2015) Ultrastructural, metabolic and proteomic changes in leaves of upland cotton in response to cadmium stress. Chemosphere 120:309–320

    Article  CAS  Google Scholar 

  • Dawood M, Cao F, Jahangir MM, Zhang G, Wu F (2012) Alleviation of aluminum toxicity by hydrogen sulfide is related to elevated ATPase, and suppressed aluminum uptake and oxidative stress in barley. J Hazard Mater 209–210:121–128

    Article  Google Scholar 

  • Dazy M, Masfaraud JF, Ferard JF (2009) Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75:297–302

    Article  CAS  Google Scholar 

  • Ernst S, Lau I, Ahner B, Kochian L (2002) Phytochelatins synthesis is not responsible for Cd tolerance in Zn/Cd hyperaccumulator Thlaspi caerulescens. Plant 214:635–640

    Article  Google Scholar 

  • Gallego SM, Pena LB, Barcia RA, Azpilicueta CE, Iannone MF, Rosales EP, Zawoznik MS, Groppa MD, Benavides MP (2012) Unraveling cadmium toxicity and tolerance in plants: insight into regulatory mechanisms. Environ Exp Bot 83:33–46

    Article  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    Article  CAS  Google Scholar 

  • Gong JM, Lee DA, Schroeder JI (2003) Long-distance root- to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci U S A 100:10118–10123

    Article  CAS  Google Scholar 

  • Hasan SA, Hayat S, Ahmad A (2011) Brassinosteroids protect photosynthetic machinery against the cadmium induced oxidative stress in two tomato cultivars. Chemosphere 84:1446–1451

    Article  CAS  Google Scholar 

  • Hegedüs A, Erdei S, Horváth G (2001) Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedlings under cadmium stress. Plant Sci 160:1085–1093

    Article  Google Scholar 

  • Howden R, Goldsbrough PB, Andersen CR, Cobbett CS (1995) Cadmium sensitive, cad1 mutants of Arabidopsis thaliana are phytochelatin deficient. Plant Physiol 107:1059–1066

    Article  CAS  Google Scholar 

  • Jiang M, Zhang J (2002) Water stress-induced abscisic acid accumulation triggers the increased generation of reactive oxygen species and upregulates the activities of antioxidant enzymes in maize leaves. J Exp Bot 53:2401–2410

    Article  CAS  Google Scholar 

  • Jin X, Yang X, Islam E, Liu D, Mahmood Q (2008) Effects of cadmium on ultrastructure and antioxidative defense system in hyperaccumulator and non-hyperaccumulator ecotypes of Sedum alfredii Hance. J Hazard Mater 156(1–3):387–397

    Article  CAS  Google Scholar 

  • Joshi MK, Mohanty P (2004) Chlorophyll a fluorescence as a probe of heavy metal ion toxicity in plants in chlorophyll a fluorescence. Adv Photosyn Res 19:637–661

    Article  CAS  Google Scholar 

  • Khan S, Cao Q, Zheng YM, Huang YZ, Zhu YG (2008) Health risks of heavy metals in contaminated soils and food stuffs irrigated with wastewater in Beijing China. Environ Pollut 152:686–692

    Article  CAS  Google Scholar 

  • Khan S, Reid BJ, Li G, Zhu YG (2014) Application of biochar to soil reduces cancer risk via rice consumption: a case study in Miaoqian village, Longyan, China. Environ Int 68:154–161

    Article  CAS  Google Scholar 

  • Khan A, Khan S, Khan MA, Qamar Z, Waqas M (2015a) The uptake and bioaccumulation of heavy metals by food plants, their effects on plants nutrients, and associated health risk: a review. Environ Sci Pollut Res 22:13772–13799

    Article  CAS  Google Scholar 

  • Khan S, Waqas M, Ding F, Shamshad I, Peter H, Arp H, Li G (2015b) The influence of various biochars on the bioaccessibility and bioaccumulation of PAHs and potentially toxic elements to turnips (Brassica rapa L.). J Hazard Mater 300:243–253

    Article  CAS  Google Scholar 

  • Kumar A, Prasad MNV, Achary MMVV, Panda BB (2013) Elucidation of lead-induced oxidative stress in Talinum triangulare roots by analysis of antioxidant responses and DNA damage at cellular level. Environ Sci Pollut Res 20:4551–4561

    Article  CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Plant 212:75–84

    Article  Google Scholar 

  • Lage-Pinto F, Oliveira JG, Cunha MD, Souza CMM, Rezende CE, Azevedo RA, Vitória AP (2008) Chlorophyll a fluorescence and ultrastructural changes in chloroplast of water hyacinth as indicators of environmental stress. Environ Exp Bot 64:307–331

    Article  CAS  Google Scholar 

  • Lannig G, Cherkasov AS, Sokolova IM (2006) Temperature-dependent effects of cadmium on mitochondrial and whole-organism bioenergetics of oysters (Crassostrea virginica). Mar Environ Res 62:79–82

    Article  Google Scholar 

  • Liu D, Kottke I (2004) Subcellular localization of cadmium in the root cells of Allium cepa by electron energy loss spectroscopy and cytochemistry. J Biosci 29:329–335

    Article  Google Scholar 

  • Liu XM, Kim KE, Kim KC, Nguyen XC, Han HJ, Jung MS, Kim HS, Kim SH, Park HGC, Yun DJ, Chung WS (2010) Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochem 71:614–618

    Article  CAS  Google Scholar 

  • Maksymiec W, Wianowska D, Dawidowicz AL, Radkiewicz S, Mardarowicz M, Krupa Z (2005) The level of jasmonic acid in Arabidopsis thaliana and Phaseolus coccineus plants under heavy metal stress. J Plant Physiol 162:1338–1346

    Article  CAS  Google Scholar 

  • Masood A, Iqbal N, Khan NA (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant, Cell Environ 35:524–533

    Article  CAS  Google Scholar 

  • Mendoza-Cózatl D, Loza-Tavera H, Hernández-Navarro A, Moreno-Sánchez R (2005) Sulfur assimilation and glutathione metabolism under cadmium stress in yeast, photosynthetic protists and plants. FEMS Microbiol Rev 29:653–671

    Article  Google Scholar 

  • Mishra S, Srivastava S, Tripathi RD, Govindarajan R, Kuriakose SV, Prasad MNV (2006) Phytochelatin synthesis and response of antioxidants during cadmium stress in Bacopa monnieri L. Plant Physiol Biochem 44:25–37

    Article  CAS  Google Scholar 

  • Najeeb U, Jilani G, Ali S, Sarwar M, Xu L, Zhou W (2011) Insights into cadmium induced physiological and ultrastructural disorders in Juncus effusus L. and its remediation through exogenous citric acid. J Hazard Mater 186:565–574

    Article  CAS  Google Scholar 

  • Nakamura S, Suzui N, Nagasaka T, Komatsu F, Ishioka NS, Ito-Tanabata S, Kawachi N, Rai H, Hattori H, Chino M, Fujimaki S (2013) Application of glutathione to roots selectively inhibits cadmium transport from roots to shoots in oilseed rape. J Exp Bot 64:1073–1081. doi:10.1093/jxb/ers388

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Noctor G, Queval G, Mhamdi A, Chaouch S, Foyer CH (2011) Glutathione. Arabidopsis Book 9:1–42

    Article  Google Scholar 

  • Noctor G, Lelarge-Trouverie C, Mhamdi A (2014) The metabolomics of oxidative stress. Phytochem. doi:10.1016/j.phytochem.2014.09.002

    Google Scholar 

  • Pandey N, Sharma CP (2002) Effect of heavy metals Co2+, Ni2+ and Cd2+ on growth and metabolism of cabbage. Plant Sci 163:753–758

    Article  CAS  Google Scholar 

  • Rouhier N, Lemoire SD, Jacquot JP (2008) The role of glutathione in photosynthetic organisms: emerging functions for glutaredoxins and glutathionylation. Annu Rev Plant Biol 59:143–166. doi:10.1146/annurev.arplant.59.032607.092811

    Article  CAS  Google Scholar 

  • Salt DE, Rauser WE (1995) Mg ATP-dependent transport of phytochelatins across the tonoplast of oat roots. Plant Physiol 107:1293–1301

    CAS  Google Scholar 

  • Sarry JE, Kuhn L, Ducruix C, Lafaye A, Junot C, Hugouvieux V, Jourdain A, Bastien O, Fievet JB, Vailhen D, Amekraz B, Moulin C, Ezan E, Garin J, Bourguignon J (2006) The early responses of Arabidopsis thaliana cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteom 6:2180–2198

    Article  CAS  Google Scholar 

  • Schützendübel A, Schwanz P, Teichmann T, Gross K, Langenfeld-Heyser R, Godbold DL, Polle A (2001) Cadmium induced changes in antioxidative systems, hydrogen peroxide content, and differentiation in Scots pine roots. Plant Physiol 127:887–898

    Article  Google Scholar 

  • Sun HY, Wang XY, Dai HX, Zhang GP, Wu FB (2013) Effect of exogenous glutathione and selenium on cadmium-induced changes in cadmium and mineral concentrations and antioxidative metabolism in maize seedlings. Asia J Chem 25:2970–2976

    CAS  Google Scholar 

  • Tian SK, Lu LL, Yang XE, Huang HG, Wang K, Brown PH (2012) Root adaptations to cadmium-induced oxidative stress contribute to Cd tolerance in the hyperaccumulator Sedum alfredii. Biol Plant 56:344–350

    Article  CAS  Google Scholar 

  • Vadas TM, Ahner BA (2009) Cysteine- and glutathione-mediated uptake of lead and cadmium into Zea mays and Brassica napus roots. Environ Pollut 157:2558–2563. doi:10.1016/j.envpol.2009.02.036

    Article  CAS  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Vitória AP, Rodriguez APM, Cunha M, Lea PJ, Azevedo RA (2004) Structural changes in radish seedlings (Raphanus sativus) exposed to cadmium. Biol Plant 47:561–568

    Article  Google Scholar 

  • Wang F, Chen F, Cai Y, Zhang G, Wu FB (2011) Modulation of exogenous glutathione in ultrastructure and photosynthetic performance against Cd stress in the two barley genotypes differing in Cd tolerance. Biol Trace Elem Res 144:1275–1288

    Article  CAS  Google Scholar 

  • Wu FB, Zhang GP, Dominy P (2003) Four barley genotypes respond differently to cadmium, lipid peroxidation and activities of antioxidant capacity. Environ Exp Bot 50:67–78

    Article  CAS  Google Scholar 

  • Wu FB, Chen F, Wei K, Zhang GP (2004) Effect of cadmium on free amino acid, glutathione and ascorbic acid concentrations in two barley genotypes (Hordeum vulgare L.) differing in cadmium tolerance. Chemosphere 57:447–454

    Article  CAS  Google Scholar 

  • Yousuf, P.Y., Hakeem, K.D.U.R., Chandna, R., Ahmad, P., 2012. Role of glutathione reductase in plant abiotic stress. P. Ahmad and M.N.V. Prasad (eds.), Abiotic stress responses in plants: metabolism, productivity and sustainability, DOI 10.1007/978-1-4614-0634-1_8.

  • Zapata JM, Salinas C, Calderón AA, Muñoz R, Ros Barceló A (1991) Reduction of 2,3,5-triphenyltetrazolium chloride by the KCN-insensitive salicylhydroxamic acid-sensitive alternative pathway of mitochondria from cultured grapevine cells. Plant Cell Rep 10:579–582

    Article  CAS  Google Scholar 

  • Zeng FR, Qui BY, Wu XJ, Niu SZ, Wu FB, Zhang GP (2012) Glutathione-mediated alleviation of chromium toxicity in rice plants. Biol Trace Elem Res 148:256–263

    Article  Google Scholar 

  • Zhang ZF, Zhang F, Raziuddin R, Gong HJ, Yang ZM, Lu L, Ye QF, Zhou WJ (2008) Effects of 5-aminolevulinic acid on oilseed rape seedling growth under herbicide toxicity stress. J Plant Growth Regul 27:159–169

    Article  Google Scholar 

  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    Article  CAS  Google Scholar 

  • Zhou WJ, Leul M (1998) Uniconazole-induced alleviation of freezing injury in relation to changes in hormonal balance, enzyme activities and lipid peroxidation in winter rape. J Plant Growth Regul 26:41–47

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The project was financially supported by 973 Project of National Natural Science Foundation of China and the National High Technology Research and Development Program of China. Submitted paper is a part of first author postdoctoral research titled “Metabolomic, proteomic and transcriptomic changes in upland cotton under heavy metal stresses.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. K. Daud or S. J. Zhu.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daud, M.K., Mei, L., Azizullah, A. et al. Leaf-based physiological, metabolic, and ultrastructural changes in cultivated cotton cultivars under cadmium stress mediated by glutathione. Environ Sci Pollut Res 23, 15551–15564 (2016). https://doi.org/10.1007/s11356-016-6739-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6739-5

Keywords

Navigation