Advertisement

Environmental Science and Pollution Research

, Volume 24, Issue 12, pp 10976–10991 | Cite as

Aerosol emissions of a ship diesel engine operated with diesel fuel or heavy fuel oil

  • Thorsten Streibel
  • Jürgen Schnelle-Kreis
  • Hendryk Czech
  • Horst Harndorf
  • Gert Jakobi
  • Jorma Jokiniemi
  • Erwin Karg
  • Jutta Lintelmann
  • Georg Matuschek
  • Bernhard Michalke
  • Laarnie Müller
  • Jürgen Orasche
  • Johannes Passig
  • Christian Radischat
  • Rom Rabe
  • Ahmed Reda
  • Christopher Rüger
  • Theo Schwemer
  • Olli Sippula
  • Benjamin Stengel
  • Martin Sklorz
  • Tiina Torvela
  • Benedikt Weggler
  • Ralf Zimmermann
Recent Advances in Chemistry and the Environment

Abstract

Gaseous and particulate emissions from a ship diesel research engine were elaborately analysed by a large assembly of measurement techniques. Applied methods comprised of offline and online approaches, yielding averaged chemical and physical data as well as time-resolved trends of combustion by-products. The engine was driven by two different fuels, a commonly used heavy fuel oil (HFO) and a standardised diesel fuel (DF). It was operated in a standardised cycle with a duration of 2 h. Chemical characterisation of organic species and elements revealed higher concentrations as well as a larger number of detected compounds for HFO operation for both gas phase and particulate matter. A noteworthy exception was the concentration of elemental carbon, which was higher in DF exhaust aerosol. This may prove crucial for the assessment and interpretation of biological response and impact via the exposure of human lung cell cultures, which was carried out in parallel to this study. Offline and online data hinted at the fact that most organic species in the aerosol are transferred from the fuel as unburned material. This is especially distinctive at low power operation of HFO, where low volatility structures are converted to the particulate phase. The results of this study give rise to the conclusion that a mere switching to sulphur-free fuel is not sufficient as remediation measure to reduce health and environmental effects of ship emissions.

Keywords

Ship diesel engine Heavy fuel oil Emission aerosol Particulate matter Elemental carbon Online measurement Organic trace compounds Heavy metals 

Notes

Acknowledgments

The study has been financially supported by the Helmholtz Virtual Institute HICE. The authors thank all the other persons and institutions, who have been directly involved in the measurement campaign at Rostock for their support.

Supplementary material

11356_2016_6724_MOESM1_ESM.tif (227 kb)
ESM 1 (TIF 226 kb)
11356_2016_6724_MOESM2_ESM.tif (201 kb)
ESM 2 (TIF 200 kb)
11356_2016_6724_MOESM3_ESM.tif (133 kb)
ESM 3 (TIF 133 kb)
11356_2016_6724_MOESM4_ESM.tif (540 kb)
ESM 4 (TIF 540 kb)
11356_2016_6724_MOESM5_ESM.tif (103 kb)
ESM 5 (TIF 103 kb)
11356_2016_6724_MOESM6_ESM.tif (278 kb)
ESM 6 (TIF 277 kb)
11356_2016_6724_MOESM7_ESM.tif (307 kb)
ESM 7 (TIF 307 kb)
11356_2016_6724_MOESM8_ESM.docx (80 kb)
ESM 8 (DOCX 79.7 kb)

References

  1. Adam TW, Clairotte M, Streibel T, Elsasser M, Pommeres A, Manfredi U, Carriero M, Martini G, Sklorz M, Krasenbrink A, Astorga C, Zimmermann R (2012) Real-time analysis of aromatics in combustion engine exhaust by resonance-enhanced multiphoton ionisation time-of-flight mass spectrometry (REMPI-TOF-MS): a robust tool for chassis dynamometer testing. Anal Bioanal Chem 404:273–276CrossRefGoogle Scholar
  2. Agrawal H, Malloy QGJ, Welch WA, Wayne Miller J, Iii DR (2008a) In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmos Environ 42:5504–5510CrossRefGoogle Scholar
  3. Agrawal H, Welch WA, Miller JW, Cockert DR (2008b) Emission measurements from a crude oil tanker at sea. Environ Sci Technol 42:7098–7103CrossRefGoogle Scholar
  4. Andreae MO, Gelencser A (2006) Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols. Atmos Chem Phys 6:3131–3148CrossRefGoogle Scholar
  5. Antipenko VR, Melenevskii VN (2012) Composition of volatile products of flash pyrolysis of natural asphaltite and its resin-asphaltene and oil components. Pet Chem 52:373–382CrossRefGoogle Scholar
  6. Araujo JA, Nel AE (2009) Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress. Part Fibre Toxicol 6:24CrossRefGoogle Scholar
  7. Ault AP, Gaston CJ, Wang Y, Dominguez G, Thiemens MH, Prather KA (2010) Characterization of the single particle mixing state of individual ship plume events measured at the port of Los Angeles. Environ Sci Technol 44:1954–1961CrossRefGoogle Scholar
  8. Bamford HA, Bezabeh DZ, Schantz MM, Wise SA, Baker JE (2003) Determination and comparison of nitrated-polycyclic aromatic hydrocarbons measured in air and diesel particulate reference materials. Chemosphere 50:575–587CrossRefGoogle Scholar
  9. Behbehani H, Andari MK (2000) Determination of organic sulfur compound types in vacuum gas oils using GC-FID-SCD method. Petrol Sci Technol 18:51–61CrossRefGoogle Scholar
  10. Brandt J, Silver JD, Christensen JH, Andersen MS, Bänläkke JH, Sigsgaard T, Geels C, Gross A, Hansen AB, Hansen KM, Hedegaard GB, Kaas E, Frohn LM (2013) Contribution from the ten major emission sectors in Europe and Denmark to the health-cost externalities of air pollution using the EVA model system—an integrated modelling approach. Atmos Chem Phys 13:7725–7746CrossRefGoogle Scholar
  11. Browning L, Hartley S, Bandemehr A, Gathright K, Miller W (2012) Demonstration of fuel switching on oceangoing vessels in the Gulf of Mexico. J Air Waste Manage Assoc 62:1093–1101CrossRefGoogle Scholar
  12. Chen Y, Shah N, Braun A, Huggins FE, Huffman GP (2005) Electron microscopy investigation of carbonaceous particulate matter generated by combustion of fossil fuels. Energy Fuels 19:1644–1651CrossRefGoogle Scholar
  13. Cho Y, Jin JM, Witt M, Birdwell JE, Na J-G, Roh N-S, Kim S (2013) Comparing laser desorption ionization and atmospheric pressure photoionization coupled to Fourier transform ion cyclotron resonance mass spectrometry to characterize shale oils at the molecular level. Energy Fuels 27:1830–1837CrossRefGoogle Scholar
  14. Cooper DA (2001) Exhaust emissions from high speed passenger ferries. Atmos Environ 35:4189–4200CrossRefGoogle Scholar
  15. Cooper DA (2003) Exhaust emissions from ships at berth. Atmos Environ 37:3817–3830CrossRefGoogle Scholar
  16. Cooper DA, Peterson K, Simpson D, Hydrocarbon, PAH and PCB emissions from ferries (1996) A case study in the Skagerak-Kattegatt-Oresund region. Atmos Environ 30:2463–2473CrossRefGoogle Scholar
  17. Corbett JJ, Winebrake JJ, Green EH, Kasibhatla P, Eyring V, Lauer A (2007) Mortality from ship emissions: a global assessment. Environ Sci Technol 41:8512–8518CrossRefGoogle Scholar
  18. Desantes JM, Bermúdez V, García JM, Fuentes E (2005) Effects of current engine strategies on the exhaust aerosol particle size distribution from a heavy-duty diesel engine. J Aerosol Sci 36:1251–1276CrossRefGoogle Scholar
  19. Diab J, Streibel T, Cavalli F, Lee SC, Saathoff H, Mamakos A, Chow JC, Chen LWA, Watson JG, Sippula O, Zimmermann R (2015) Hyphenation of a EC/OC thermal-optical carbon analyzer to photo-ionization time-of-flight mass spectrometry: An off-line aerosol mass spectrometric approach for characterization of primary and secondary particulate matter. Atmos Meas Tech 8:3337–3353Google Scholar
  20. Eyring V, Köhler HW, van Aardenne J, Lauer A (2005) Emissions from international shipping: 1. The last 50 years. J Geophys Res-Atmos 110:D17305CrossRefGoogle Scholar
  21. Eyring V, Isaksen ISA, Berntsen T, Collins WJ, Corbett JJ, Endresen O, Grainger RG, Moldanova J, Schlager H, Stevenson DS (2010) Transport impacts on atmosphere and climate: shipping. Atmos Environ 44:4735–4771CrossRefGoogle Scholar
  22. Feilberg A, Poulsen MWB, Nielsen T, Skov H (2001) Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark. Atmos Environ 35:353–366CrossRefGoogle Scholar
  23. Fridell E, Steen E, Peterson K (2008) Primary particles in ship emissions. Atmos Environ 42:1160–1168CrossRefGoogle Scholar
  24. Fushimi A, Saitoh K, Fujitani Y, Hasegawa S, Takahashi K, Tanabe K, Kobayashi S (2011) Organic-rich nanoparticles (diameter: 10-30 nm) in diesel exhaust: fuel and oil contribution based on chemical composition. Atmos Environ 45:6326–6336CrossRefGoogle Scholar
  25. Fushimi A, Hashimoto S, Ieda T, Ochiai N, Takazawa Y, Fujitani Y, Tanabe K (2012) Thermal desorption-comprehensive two-dimensional gas chromatography coupled with tandem mass spectrometry for determination of trace polycyclic aromatic hydrocarbons and their derivatives. J Chrom A 1252:164–170CrossRefGoogle Scholar
  26. Gonzalez Y, Rodriguez S, Guerra Garcia JC, Trujillo JL, Garcia R (2011) Ultrafine particles pollution in urban coastal air due to ship emissions. Atmos Environ 45:4907–4914CrossRefGoogle Scholar
  27. Grabowsky J, Streibel T, Sklorz M, Chow JC, Watson JG, Mamakos A, Zimmermann R (2011) Hyphenation of a carbon analyzer to photo-ionization mass spectrometry to unravel the organic composition of particulate matter on a molecular level. Anal Bioanal Chem 401:3153–3164Google Scholar
  28. Groeger T, Welthagen W, Mitschke S, Schaeffer M, Zimmermann R (2008) Application of comprehensive two-dimensional gas chromatography mass spectrometry and different types of data analysis for the investigation of cigarette particulate matter. J Sep Sci 31:3366–3374CrossRefGoogle Scholar
  29. Healy RM, O’Connor IP, Hellebust S, Allanic A, Sodeau JR, Wenger JC (2009) Characterisation of single particles from in-port ship emissions. Atmos Environ 43:6408–6414CrossRefGoogle Scholar
  30. Hilton DC, Jones RS, Sjoedin A (2010) A method for rapid, non-targeted screening for environmental contaminants in household dust. J Chrom A 1217:6851–6856CrossRefGoogle Scholar
  31. Hobbs PV, Garrett TJ, Ferek RJ, Strader SR, Hegg DA, Frick GM, Hoppel WA, Gasparovic RF, Russell LM, Johnson DW, O’Dowd C, Durkee PA, Nielsen KE, Innis G (2000) Emissions from ships with respect to their effects on clouds. J Atmos Sci 57:2570–2590CrossRefGoogle Scholar
  32. Jayaram V, Agrawal H, Welch WA, Miller JW, Cocker Iii DR (2011) Real-time gaseous, PM and ultrafine particle emissions from a modern marine engine operating on biodiesel. Environ Sci Technol 45:2286–2292CrossRefGoogle Scholar
  33. Kasper A, Aufdenblatten S, Forss A, Mohr M, Burtscher H (2007) Particulate emissions from a low-speed marine diesel engine. Aerosol Sci Tech 41:24–32CrossRefGoogle Scholar
  34. Khan MY, Giordano M, Gutierrez J, Welch WA, Asa-Awuku A, Miller JW, Cocker Iii DR (2012) Benefits of two mitigation strategies for container vessels: cleaner engines and cleaner fuels. Environ Sci Technol 46:5049–5056CrossRefGoogle Scholar
  35. Lin CY, Huang JC (2003) An oxygenating additive for improving the performance and emission characteristics of marine diesel engines. Ocean Eng 30:1699–1715CrossRefGoogle Scholar
  36. Lu G, Brook JR, Rami Alfarra M, Anlauf K, Richard Leaitch W, Sharma S, Wang D, Worsnop DR, Phinney L (2006) Identification and characterization of inland ship plumes over Vancouver. BC Atmos Environ 40:2767–2782CrossRefGoogle Scholar
  37. Lyyranen J, Jokiniemi J, Kauppinen EI, Joutsensaari (1999) Aerosol characterisation in medium-speed diesel engines operating with heavy fuel oils. J Aerosol Sci 30:771–784CrossRefGoogle Scholar
  38. Merker GP, Schwarz C, Teichmann R, Durst B, Eckert P, Otto F, Christian F, Rakowski S, Reulein C, Stiesch G (2011) Schadstoffbildung, in: rundlagen Verbrennungsmotoren: Funktionsweise, Simulation, Messtechnik. Wiesbaden 260–261Google Scholar
  39. Moldanova J, Fridell E, Popovicheva O, Demirdjian B, Tishkova V, Faccinetto A, Focsa C (2009) Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmos Environ 43:2632–2641CrossRefGoogle Scholar
  40. Moldanová J, Fridell E, Popovicheva O, Demirdjian B, Tishkova V, Faccinetto A, Focsa C (2009) Characterisation of particulate matter and gaseous emissions from a large ship diesel engine. Atmos Environ 43:2632–2641CrossRefGoogle Scholar
  41. Moldanová J, Fridell E, Winnes H, Holmin-Fridell S, Boman J, Jedynska A, Tishkova V, Demirdjian B, Joulie S, Bladt H, Ivleva NP, Niessner R (2013) Physical and chemical characterisation of PM emissions from two ships operating in European emission control areas. Atmos Meas Tech 6:3577–3596CrossRefGoogle Scholar
  42. Montero L, Duane M, Manfredi U, Astorga C, Martini G, Carriero M, Krasenbrink A, Larsen BR (2010) Hydrocarbon emission fingerprints from contemporary vehicle/engine technologies with conventional and new fuels. Atmos Environ 44:2167–2175CrossRefGoogle Scholar
  43. Mori Y, Taneda S, Hayashi H, Sakushima A, Kamata K, Suzuki AK, Yoshino S, Sakata M, Sagai M, Seki K (2002) Estrogenic activities of chemicals in diesel exhaust particles. Biol Pharm Bull 25:145–146CrossRefGoogle Scholar
  44. Mueller D, Uibel S, Takemura M, Klingelhoefer D, Groneberg D (2011) Ships, ports and particulate air pollution—an analysis of recent studies. J Occup Med Toxicol 6:1–6CrossRefGoogle Scholar
  45. Müller L, Jakobi G, Czech H, Stengel B, Orasche J, Arteaga-Salas JM, Karg EW, Elsasser M, Sippula O, Streibel T, Slowik JG, Prevot ASH, Jokiniemi J, Rabe R, Harndorf H, Michalke B, Schnelle-Kreis J, Zimmermann R (2015) Characteristics and temporal evolution of particulate emissions from a ship diesel engine. Appl Energy 155:204–217Google Scholar
  46. Murphy S, Agrawal H, Sorooshian A, Padrä LT, Gates H, Hersey S, Welch WA, Jung H, Miller JW, Cocker Iii DR, Nenes A, Jonsson HH, Flagan RC, Seinfeld JH (2009) Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea. Environ Sci Technol 43:4626–4640CrossRefGoogle Scholar
  47. Oeder S et al (2015) Particulate matter from both heavy fuel oil and diesel fuel shipping emissions show strong biological effects on human lung cells at realistic and comparable in vitro exposure conditions. PLoS One 10(6):e0126536CrossRefGoogle Scholar
  48. Orasche J, Schnelle-Kreis J, Abbaszade G, Zimmermann R (2011) Technical note: in-situ derivatization thermal desorption GC-TOFMS for direct analysis of particle-bound non-polar and polar organic species. Atmos Chem Phys 11:8977–8993CrossRefGoogle Scholar
  49. Pandolfi M, Gonzalez-Castanedo Y, Alastuey A, Rosa J, Mantilla E, Campa AS, Querol X, Pey J, Amato F, Moreno T (2011) Source apportionment of PM10 and PM2.5 at multiple sites in the strait of Gibraltar by PMF: impact of shipping emissions. Environ Sci Pollut Res 18:260–269CrossRefGoogle Scholar
  50. Peltonen K, Vaaranrinta R (1995) Sampling and analysis of 1,3-butadiene in air by gas chromatography on a porous-layer open-tubular fused-silica column. J Chrom A 710:237–241CrossRefGoogle Scholar
  51. Petzold A, Lauer P, Fritsche U, Hasselbach J, Lichtenstern M, Schlager H, Fleischer F (2011) Operation of marine diesel engines on biogenic fuels: modification of emissions and resulting climate effects. Environ Sci Technol 45:10394–10400CrossRefGoogle Scholar
  52. Poplawski K, Setton E, McEwen B, Hrebenyk D, Graham M, Keller P (2011) Impact of cruise ship emissions in Victoria, BC. Can Atmos Environ 45:824–833CrossRefGoogle Scholar
  53. Popovicheva O, Kireeva E, Shonija N, Zubareva N, Persiantseva N, Tishkova V, Demirdjian B, Moldanova J, Mogilnikov V (2009) Ship particulate pollutants: characterization in terms of environmental implication. J Environ Monit 11:2077–2086CrossRefGoogle Scholar
  54. Radischat C, Sippula O, Stengel B, Klingbeil S, Sklorz M, Rabe R, Streibel T, Harndorf H, Zimmermann R (2015) Real-time analysis of organic compounds in ship engine aerosol emissions using resonance-enhanced multiphoton ionisation and proton transfer mass spectrometry. Anal Bioanal Chem 407:5939–5951Google Scholar
  55. Reda AA, Schnelle-Kreis J, Orasche J, Abbaszade G, Lintelmann J, Arteaga-Salas JM, Stengel B, Rabe R, Harndorf H, Sippula O, Streibel T, Zimmermann R (2014) Gas phase carbonyl compounds in ship emissions: differences between diesel fuel and heavy fuel oil operation. Atmos Environ 94:467–478CrossRefGoogle Scholar
  56. Rönkkö T, Virtanen A, Kannosto J, Keskinen J, Lappi M, Pirjola L (2007) Nucleation mode particles with a nonvolatile core in the exhaust of a heavy duty diesel vehicle. Environ Sci Technol 41:6384–6389CrossRefGoogle Scholar
  57. Salamanca M, Mondragon F, Agudelo JR, Santamaria A (2012) Influence of palm oil biodiesel on the chemical and morphological characteristics of particulate matter emitted by a diesel engine. Atmos Environ 62:220–227CrossRefGoogle Scholar
  58. Sarvi A, Fogelholm C-J, Zevenhoven R (2008a) Emissions from large-scale medium-speed diesel engines: 1. Influence of engine operation mode and turbocharger. Fuel Process Technol 89:510–519CrossRefGoogle Scholar
  59. Sarvi A, Fogelholm C-J, Zevenhoven R (2008b) Emissions from large-scale medium-speed diesel engines: 2. Influence of fuel type and operating mode. Fuel Process Technol 89:520–527CrossRefGoogle Scholar
  60. Shiraiwa M, Selzle K, Pöschl U (2012) Hazardous components and health effects of atmospheric aerosol particles: reactive oxygen species, soot, polycyclic aromatic compounds and allergenic proteins. Free Radic Res 46:927–939CrossRefGoogle Scholar
  61. Sinha P, Hobbs PV, Yokelson RJ, Christian TJ, Kirchstetter TW, Bruintjes R (2003) Emissions of trace gases and particles from two ships in the southern Atlantic Ocean. Atmos Environ 37:2139–2148CrossRefGoogle Scholar
  62. Sippula O, Koponen T, Jokiniemi J (2012) Behavior of alkali metal aerosol in a high-temperature porous tube sampling probe. Aerosol Sci Tech 46:1151–1162CrossRefGoogle Scholar
  63. Squadrito GL, Cueto R, Dellinger B, Pryor WA (2001) Quinoid redox cycling as a mechanism for sustained free radical generation by inhaled airborne particulate matter. Free Radical Bio Med 31:1132–1138CrossRefGoogle Scholar
  64. Streibel T, Fendt A, Geissler R, Kaisersberger E, Denner T, Zimmermann R (2009) Thermal analysis/mass spectrometry using soft photo-ionisation for the investigation of biomass and mineral oils. J Therm Anal Cal 97:615–619CrossRefGoogle Scholar
  65. Tian L, Ho KF, Louie PKK, Qiu H, Pun VC, Kan H, Yu ITS, Wong TW (2013) Shipping emissions associated with increased cardiovascular hospitalizations. Atmos Environ 74:320–325CrossRefGoogle Scholar
  66. Ushakov S, Valland H, Nielsen JB, Hennie E (2013) Particle size distributions from heavy-duty diesel engine operated on low-sulfur marine fuel. Fuel Process Technol 106:350–358CrossRefGoogle Scholar
  67. Weggler BA, Groeger T, Zimmermann R (2014) Advanced scripting for the automated profiling of two-dimensional gas chromatography-time-of-flight mass spectrometry data from combustion aerosol. J Chrom A 1364:241–248CrossRefGoogle Scholar
  68. Welthagen W, Schnelle-Kreis J, Zimmermann R (2003) Search criteria and rules for comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry analysis of airborne particulate matter. J Chrom A 1019:233–249CrossRefGoogle Scholar
  69. Winnes H, Fridell E (2009) Particle emissions from ships: dependence on fuel type. J Air Waste Manag Assoc 59:1391–1398CrossRefGoogle Scholar
  70. Yau PS, Lee SC, Cheng Y, Huang Y, Lai SC, Xu XH (2013) Contribution of ship emissions to the fine particulate in the community near an international port in Hong Kong. Atmos Res 124:61–7213CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Thorsten Streibel
    • 1
    • 2
  • Jürgen Schnelle-Kreis
    • 2
  • Hendryk Czech
    • 1
  • Horst Harndorf
    • 3
  • Gert Jakobi
    • 2
  • Jorma Jokiniemi
    • 4
  • Erwin Karg
    • 2
  • Jutta Lintelmann
    • 2
  • Georg Matuschek
    • 6
  • Bernhard Michalke
    • 5
  • Laarnie Müller
    • 2
  • Jürgen Orasche
    • 2
  • Johannes Passig
    • 1
  • Christian Radischat
    • 1
  • Rom Rabe
    • 3
  • Ahmed Reda
    • 2
  • Christopher Rüger
    • 1
  • Theo Schwemer
    • 1
  • Olli Sippula
    • 4
  • Benjamin Stengel
    • 3
  • Martin Sklorz
    • 1
  • Tiina Torvela
    • 4
  • Benedikt Weggler
    • 2
  • Ralf Zimmermann
    • 1
    • 2
  1. 1.Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of ChemistryUniversity RostockRostockGermany
  2. 2.Joint Mass Spectrometry Centre, CMA-Comprehensive Molecular AnalyticsHelmholtz Zentrum MünchenNeuherbergGermany
  3. 3.Chair of Piston Machines and Internal Combustion EnginesUniversity RostockRostockGermany
  4. 4.Fine Particle and Aerosol Technology Laboratory, Department of Environmental and Biological SciencesUniversity of Eastern FinlandKuopioFinland
  5. 5.Research Unit Medical Radiation Physics and Diagnostics (AMSD)Helmholtz Zentrum MünchenNeuherbergGermany
  6. 6.Research Unit Analytical BioGeoChemistryHelmholtz Zentrum MünchenNeuherbergGermany

Personalised recommendations