Environmental Science and Pollution Research

, Volume 23, Issue 15, pp 15041–15052

Importance of organic amendment characteristics on bioremediation of PAH-contaminated soil

  • B. Lukić
  • D. Huguenot
  • A. Panico
  • M. Fabbricino
  • E. D. van Hullebusch
  • G. Esposito
Research Article


This study investigates the importance of the organic matter characteristics of several organic amendments (i.e., buffalo manure, food and kitchen waste, fruit and vegetables waste, and activated sewage sludge) and their influence in the bioremediation of a polycyclic aromatic hydrocarbons (PAH)-contaminated soil. The removal of low molecular weights (LMW) and high molecular weights (HMW) PAHs was monitored in four bioremediation reactors and used as an indicator of the role of organic amendments in contaminant removal. The total initial concentration of LMW PAHs was 234 mg kg−1 soil (dry weight), while the amount for HMW PAHs was 422 mg kg−1 soil (dry weight). Monitoring of operational parameters and chemical analysis was performed during 20 weeks. The concentrations of LMW PAH residues in soil were significantly lower in reactors that displayed a mesophilic phase, i.e., 11 and 15 %, compared to reactors that displayed a thermophilic phase, i.e., 29 and 31 %. Residual HMW PAHs were up to five times higher compared to residual LMW PAHs, depending on the reactor. This demonstrated that the amount of added organic matter and macronutrients such as nitrogen and phosphorus, the biochemical organic compound classes (mostly soluble fraction and proteins), and the operational temperature are important factors affecting the overall efficiency of bioremediation. On that basis, this study shows that characterization of biochemical families could contribute to a better understanding of the effects of organic amendments and clarify their different efficiency during a bioremediation process of PAH-contaminated soil.


Polycyclic aromatic hydrocarbons Bioremediation Co-composting Organic substrates Spiked soil Organic matter fractionation 


  1. Ankom Technology (2015a) Analytical Methods [WWW Document]. https://www.ankom.com/analytical-methods-support/fiber-analyzer-a2000. Accessed 6 Dec 2015
  2. Antizar-Ladislao B, Lopez-Real J, Beck AJ (2005) In-vessel composting-bioremediation of aged coal tar soil: effect of temperature and soil/green waste amendment ratio. Environ Int 31:173–178. doi:10.1016/j.envint.2004.09.012 CrossRefGoogle Scholar
  3. APHA American Public Health Association (APHA), American Water Works Association (AWWA), Water Environment Federation (WEF), 1998. Chemical oxygen demand (COD), 5220 D Closed Reflux, Colorimetric method in: Standard methods for the examination of water and wastewaterGoogle Scholar
  4. ASTM American Society for Testing and Materials, 1999. Standard Test Method for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. Designation: D 2216 – 98Google Scholar
  5. Atagana HI, Haynes RJ, Wallis FM (2003) Co-composting of soil heavily contaminated with creosote with cattle manure and vegetable waste for the bioremediation of creosote-contaminated Soil. An Int. J. 885–899Google Scholar
  6. Bamforth SM, Singleton I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736. doi:10.1002/jctb.1276 CrossRefGoogle Scholar
  7. Bergknut M (2006) Characterization of PAH-contaminated soils focusing on availability, chemical composition and biological effects. PhD thesis pp. 58, Umeå UniversityGoogle Scholar
  8. Bot A, Benites J (2005) The importance of soil organic matter, Key to drought-resistant soil and sustained food production, FAO Soils Bulletin. Food and Agriculture Organization of the United Nations. doi:10.1080/03650340214162Google Scholar
  9. Brinch UC, Ekelund F, Jacobsen CS (2002) Method for Spiking Soil Samples with Organic Compounds. Appl. Environ. Microbiol. 68. doi:10.1128/AEM.68.4.1808Google Scholar
  10. Dreyer A, Radke M, Turunen J, Blodau C (2005) Long-term change of polycyclic aromatic hydrocarbon deposition to peatlands of eastern Canada. Environ Sci Technol 39:3918–3924CrossRefGoogle Scholar
  11. Dulekgurgen E (2004) Proteins Protocol 2 Lowry solution [WWW Document]. UIUC. URL http://web.itu.edu.tr/~dulekgurgen/Proteins.pdf . Accessed 22 May 2015Google Scholar
  12. Eom IC, Rast C, Veber AM, Vasseur P (2007) Ecotoxicity of a polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Ecotoxicol Environ Saf 67:190–205. doi:10.1016/j.ecoenv.2006.12.020 CrossRefGoogle Scholar
  13. Fernández-Luqueño F, Marsch R, Espinosa-Victoria D, Thalasso F, Hidalgo Lara ME, Munive A, Luna-Guido ML, Dendooven L (2008) Remediation of PAHs in a saline-alkaline soil amended with wastewater sludge and the effect on dynamics of C and N. Sci Total Environ 402:18–28. doi:10.1016/j.scitotenv.2008.04.040 CrossRefGoogle Scholar
  14. Gan S, Lau EV, Ng HK (2009) Remediation of soils contaminated with polycyclic aromatic hydrocarbons (PAHs). J Hazard Mater 172:532–549. doi:10.1016/j.jhazmat.2009.07.118 CrossRefGoogle Scholar
  15. Guerin TF (2000) The differential removal of aged polycyclic aromatic hydrocarbons from soil during bioremediation. Environ Sci Pollut Res 7:19–26. doi:10.1065/espr199910.004 CrossRefGoogle Scholar
  16. Haderlein A, Legros R, Ramsay BA (2006) Pyrene mineralization capacity increases with compost maturity. Biodegradation 17:293–302. doi:10.1007/s10532-005-4217-8 CrossRefGoogle Scholar
  17. Hood EE, Nelson P, Powell R (2011) Plant Biomass Conversion [WWW Document]. URL https://books.google.com/books?id=EHUq5W_ZEkMC&pgis=1. Accessed 28 April 2015Google Scholar
  18. Janssen I, Koopmann R (2005) Determination of Kjeldahl Nitrogen in soil, biowaste and sewage sludge. CEN/BT/Task Force 151 – Horiz. Stand. held by Danish StandGoogle Scholar
  19. Joseph PJ (2007) Bioremediation of petroleum sludge through Phytoremediation, Land farming and Microbial enhanced oil separation. PhD thesis pp. 157, Cochin University of Science and TechnologyGoogle Scholar
  20. Leys NM, Bastiaens L, Verstraete W, Springael D (2005) Influence of the carbon/nitrogen/phosphorus ratio on polycyclic aromatic hydrocarbon degradation by Mycobacterium and Sphingomonas in soil. Appl Microbiol Biotechnol 66:726–736. doi:10.1007/s00253-004-1766-4 CrossRefGoogle Scholar
  21. Ling CC, Isa MH (2006) Bioremediation of oil sludge contaminated soil by co-composting with sewage sludge. J Sci Ind Res (India) 65:364–369Google Scholar
  22. McDowell D, Maloney M, Swan L, Erwin P (2007) A Review of the Fruit and Vegetable Food Chain [WWW Document]. URL http://www.safefood.eu/Publications/Research-reports/Fruit-and-Vegetables.aspx. Accessed 29 October 2014Google Scholar
  23. McKenzie L (2015) Metabolism: nitrogen - biochemistry | Fastbleep [WWW Document]. URL http://www.fastbleep.com/biology-notes/40/116/753. Accessed 28 April 2015Google Scholar
  24. Mohan SV, Kisa T, Ohkuma T, Kanaly RA, Shimizu Y (2006) Bioremediation technologies for treatment of PAH-contaminated soil and strategies to enhance process efficiency. Rev Environ Sci Biotechnol 5:347–374. doi:10.1007/s11157-006-0004-1 CrossRefGoogle Scholar
  25. Namkoong W, Hwang EY, Park JS, Choi JY (2002) Bioremediation of diesel-contaminated soil with composting. Environ Pollut 119:23–31. doi:10.1016/S0269-7491(01)00328-1 CrossRefGoogle Scholar
  26. Nduka JK, Umeh LN, Okerulu IO, Umedum LN, Okoye HN (2012) Utilization of Different Microbes in Bioremediation of Hydrocarbon Contaminated Soils Stimulated With Inorganic and Organic Fertilizers. J. Pet. Environ. Biotechnol. 03. doi:10.4172/2157-7463.1000116Google Scholar
  27. OECD/OCDE 317 (2010) OECD Guidelines for the testing of chemicals. doi:10.1787/9789264090934-en
  28. Okere UV, Semple KT (2012) Biodegradation of PAHs in “pristine” soils from different climatic regions. J Bioremediation Biodegrad 01:1–11. doi:10.4172/2155-6199.S1-006 Google Scholar
  29. Pansu M, Gautheyrou J (2006) Handbook of soil analysis mineralogical, organic and inorganic methods. Springer, Berlin HeidelbergGoogle Scholar
  30. Picado A, Nogueira A, Baeta-Hall L, Mendonça E, de Fátima Rodrigues M, do Céu Sàágua M, Martins A, Anselmo AM (2001) Landfarming in a PAH-contaminated soil. J Environ Sci Heal A36:1579–1588. doi:10.1081/ESE-100106243 CrossRefGoogle Scholar
  31. Pu X, Cutright TJ (2006) Sorption–desorption behavior of PCP on soil organic matter and clay minerals. Chemosphere 64:972–983. doi:10.1016/j.chemosphere.2006.01.017 CrossRefGoogle Scholar
  32. Rhodes AH, Hofman J, Semple KT (2008) Development of phenanthrene catabolism in natural and artificial soils. Environ Pollut 152:424–430. doi:10.1016/j.envpol.2007.06.072 CrossRefGoogle Scholar
  33. Sawada A, Kanai K, Fukushima M (2004) Preparation of artificially spiked soil with polycyclic aromatic hydrocarbons for soil pollution analysis. Anal Sci 20:239–241. doi:10.2116/analsci.20.239 CrossRefGoogle Scholar
  34. Sayara T, Sarrà M, Sánchez A (2010) Effects of compost stability and contaminant concentration on the bioremediation of PAHs-contaminated soil through composting. J Hazard Mater 179:999–1006. doi:10.1016/j.jhazmat.2010.03.104 CrossRefGoogle Scholar
  35. Sayara T, Borràs E, Caminal G, Sarrà M, Sánchez A (2011) Bioremediation of PAHs-contaminated soil through composting: influence of bioaugmentation and biostimulation on contaminant biodegradation. Int Biodeterior Biodegrad 65:859–865. doi:10.1016/j.ibiod.2011.05.006 CrossRefGoogle Scholar
  36. Thassitou PK, Arvanitoyannis IS (2001) Bioremediation: a novel approach to food waste management. Trends Food Sci Technol 12:185–196. doi:10.1016/S0924-2244(01)00081-4 CrossRefGoogle Scholar
  37. U. S. Environmental Protection Agency (1994) Chapter V Landfarming [WWW Document]. URL http://www.epa.gov/oust/pubs/tum_ch5.pdf . Accessed 22 January 2015
  38. U. S. Environmental Protection Agency (2012a) Method 9045D soil and waste pH [WWW Document]. URL http://www.epa.gov/osw/hazard/testmethods/sw846/online/9_series.htm. Accessed 14 October 2014
  39. U. S. Environmental Protection Agency (2012b) Method 3546 microwave extraction [WWW Document]. URL http://www.epa.gov/osw/hazard/testmethods/sw846/online/3_series.htm. Accessed 14 October 2014
  40. U. S. Environmental Protection Agency (2012c) Method 8270D semivolatile organic compounds by gas chromatography/mass spectrometry (GC/MS) [WWW Document]. URL http://www.epa.gov/osw/hazard/testmethods/sw846/online/8_series.htm. Accessed 14 October 2014
  41. Van Gestel K, Mergaert J, Swings J, Coosemans J, Ryckeboer J (2003) Bioremediation of diesel oil-contaminated soil by composting with biowaste. Environ Pollut 125:361–368. doi:10.1016/S0269-7491(03)00109-X CrossRefGoogle Scholar
  42. Van Soest PJ (1963) Use of detergents in the analysis of fibrous feeds II. A rapid method for the determination of fiber and lignin. J Assoc Official Agric Chem 46:829–835Google Scholar
  43. Wick FA, Haus WN, Sukkariyah FB, Haering CK, Daniels LW (2011) Remediation of PAH-contaminated soils and sediments: a literature review [WWW Document]. URL http://landrehab.org/ Accessed 12 November 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • B. Lukić
    • 1
    • 2
  • D. Huguenot
    • 3
  • A. Panico
    • 4
  • M. Fabbricino
    • 1
  • E. D. van Hullebusch
    • 4
  • G. Esposito
    • 2
  1. 1.Department of Civil, Architectural and Environmental EngineeringUniversity of Naples Federico IINaplesItaly
  2. 2.Department of Civil and Mechanical EngineeringUniversity of Cassino and Southern LazioCassinoItaly
  3. 3.Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEMMarne-la-ValléeFrance
  4. 4.Telematic University PegasoNaplesItaly

Personalised recommendations