Advertisement

Environmental Science and Pollution Research

, Volume 23, Issue 11, pp 11363–11378 | Cite as

Soil ecotoxicology in Brazil is taking its course

  • Cintia Carla NivaEmail author
  • Julia Carina Niemeyer
  • Flávio Manoel Rodrigues Da Silva Júnior
  • Maria Edna Tenório Nunes
  • Danilo Lourenço De Sousa
  • Clara Wandenkolck Silva Aragão
  • Klaus Dieter Sautter
  • Evaldo Gaeta Espindola
  • José Paulo Sousa
  • Jörg Römbke
Research and Education Highlights

Abstract

Soil ecotoxicology has been motivated by the increasing global awareness on environmental issues. Northern Hemisphere has been the main driver of this science branch; however, the number and quality of contributions from the Southern Hemisphere are increasing quickly. In this case study, Brazil is taken as an example of how soil ecotoxicology has developed over the last 30 years. It starts with a brief historical overview depicting the main events on soil ecotoxicology in the country. Following, an overview on the Brazilian legislation related to soil ecotoxicology is given, covering regulations with prospective focus, mainly on the registration of pesticides. Regulations with retrospective focus in contaminated areas are also given. Then, an outline of the actors in soil ecotoxicology and examples of prospective ecotoxicological studies performed with soil organisms and plants are given by stressor groups: pesticides, pharmaceuticals, metals, and residues. Experiences from retrospective studies, mainly looking at the assessment of industrial sites, are also covered. Emphasis is given on methodological aspects, pointing to needed actions, mainly regarding the different biotic and abiotic conditions of a tropical country. Finally, the last session discusses how soil ecotoxicology could be improved in methodological adaptations as well as legal requirements.

Keywords

Soil ecotoxicology Tropics Legislation Soil organisms Pesticides Residues Risk assessment 

Notes

Acknowledgments

Cintia Carla Niva was granted with a postdoctoral scholarship by PNPD/CNPq no. 151666/2008-3 (2008-2013) at Embrapa Florestas and PNPD/CAPES (2013-2014) at Universidade Positivo. Maria Edna T. Nunes was granted with a postdoctoral scholarship by PNPD/CAPES (2013-2016) at EESC/USP. José Paulo Sousa was funded by “Fundação CAPES” Visitors Research Grant under the project no. 079/2012 of “Ciência sem Fronteiras—CAPES” programme. The authors thank Marcos Garcia and Andrea Waichman for the dedication in risk assessment studies in the early days of soil ecotoxicology in Brazil.

References

  1. ABNT - Associaҫão Brasileira de Normas Técnicas (2010) ISO 17616:2010 Soil quality—guidance on the choice and evaluation of bioassays for ecotoxicological characterization of soils and soil materials. ABNT, Rio de Janeiro, p 11, in PortugueseGoogle Scholar
  2. ABNT - Associaҫão Brasileira de Normas Técnicas (2007) NBR 15537. Terrestrial Ecotoxicology: Acute toxicity. Method of earthworms test. ABNT, Rio de Janeiro, p 11, in PortugueseGoogle Scholar
  3. ABNT - Associaҫão Brasileira de Normas Técnicas (2011a) ISO 15799:2003 Soil quality—guidance on the ecotoxicological characterization of soils and soil materials. ABNT, Rio de Janeiro, p 42, in PortugueseGoogle Scholar
  4. ABNT - Associaҫão Brasileira de Normas Técnicas (2011b) ISO 11267:1999. Soil quality—inhibition of reproduction of Collembola (Folsomia candida) by soil pollutants. ABNT, Rio de Janeiro, p 18, in PortugueseGoogle Scholar
  5. ABNT Associaҫão Brasileira de Normas Técnicas (2011) ISO 17512-1:2008. Soil quality—avoidance test for determining the quality of soils and effects of chemicals on behaviour Part 1: Test with earthworms (Eisenia fetida and Eisenia andrei). ABNT, Rio de Janeiro, p 26, in PortugueseGoogle Scholar
  6. ABNT Associaҫão Brasileira de Normas Técnicas (2012) ISO 16387:2004. Soil quality—effects of pollutants on Enchytraeidae (Enchytraeus sp.)—determination of effects on reproduction and survival. ABNT, Rio de Janeiro, p 29, in PortugueseGoogle Scholar
  7. ABNT Associaҫão Brasileira de Normas Técnicas (2014) NBR 15537:2014 Terrestrial ecotoxicology—acute toxicity—test method with earthworm (Lumbricidae). ABNT, Rio de Janeiro, p 13, in PortugueseGoogle Scholar
  8. AFNOR – Association Française de Normalisation (1984) Qualité des soils: determination de latoxicité d’une substance vis-à-vis des lombriciens (espèce Eisenia fetida). Method “artisol”. Norme NFX 31-250, Paris.Google Scholar
  9. Alves PRL, Cardoso EJBN, Martines AM et al (2013) Earthworm ecotoxicological assessments of pesticides used to treat seeds under tropical conditions. Chemosphere 90:2674–2682. doi: 10.1016/j.chemosphere.2012.11.046 CrossRefGoogle Scholar
  10. Alves PRL, Cardoso EJBN, Martines AM, Sousa JP, Pasini A (2014) Seed dressing pesticides on springtails in two ecotoxicological laboratory tests. Ecotox Environ Safe 105:65–71. doi: 10.1016/j.ecoenv.2014.04.010 CrossRefGoogle Scholar
  11. Alves PRL, Natal-da-Luz T, Sousa JP, Cardoso EJBN (2015) Ecotoxicological characterization of sugarcane vinasses when applied to tropical soils. Sci Total Environ 526:222–232. doi: 10.1016/j.scitotenv.2015.03.150 CrossRefGoogle Scholar
  12. Alves RH, Rietzler AC (2015) Toxic Effects of Arsenic on Eisenia Andrei Exposed to Soils Surrounding Gold Mining Operations. R Bras Ci Solo 39:69–682. doi: 10.1590/01000683rbcs20140060 CrossRefGoogle Scholar
  13. Andréa MM, Papini S (2005) Influence of soil properties on bioaccumulation of 14C-simazine in earthworms Eisenia foetida. J Environ Sci Health B 40:55–58CrossRefGoogle Scholar
  14. Andréa MM, Peres TB, Luchini LC, Pettinelli A Jr (2000) Impact of long‐term pesticide applications on some soil biological parameters. J Environ Sci Health B 35:297–307Google Scholar
  15. Assis O (2015) Enchytraeids (Enchytraeidae, Oligochaeta) as indicators of soil management and ecotoxicological tests. Dissertation. Universidade Tecnológica Federal do Paraná, Curitiba, Brazil, in PortugueseGoogle Scholar
  16. Associaҫão Brasileira de Normas Técnicas – ABNT (2007) NBR 15537. Terrestrial ecotoxicology: acute toxicity. Method of earthworms test. ABNT, Rio de Janeiro, p 11, in PortugueseGoogle Scholar
  17. Bandow C, Coors A, Römbke J (2013) Enchytraeus bigeminus (Enchytraeidae, Oligochaeta) as a new candidate for ecotoxicological laboratory studies. Soil Org 85:103–112Google Scholar
  18. Benazzi ES (2015) Avaliação Ecotoxicológica de Resíduos da Perfuração Petrolífera em Terra, PhD thesis. Universidade Federal Rural do Rio de Janeiro, Brazil, in PortugueseGoogle Scholar
  19. Bianchi MO (2015) Ecotoxicological assays as a tool for environmental impact assessment of mining waste on soil, PhD thesis. Universidade Federal Rural do Rio de Janeiro, Brazil, in PortugueseGoogle Scholar
  20. Boxall ABA, Fogg LA, Blackwell PA, Kay P, Pemberton EJ, Croxford A (2004) Veterinary Medicines in the Environment. Rev Environ Contam Toxicol 180:1–91Google Scholar
  21. Brazil (2009a) IBAMA Normative Instruction No. 16, May 29th, 2009. Establish administrative procedures for environmental reevaluation of pesticides in IBAMA. Union Official Journal No. 102, Section 1, pg 86. published in jun. 1st,2009, Brasília, DF. (in Portuguese)Google Scholar
  22. Brazil (2009b) Ministry of the Envionment. National Environmental Council – CONAMA. Resolution No. 420, December 28th, 2009. Establish criteria and guiding values of soil quality concerning the presence of chemical substances, and establishes guidelines for environmental management of contaminated areas by these substances, as a result of human activities. Union Official Journal No. 249, Section 1, pg 81. published in Dec. 30th,2009, Brasília, DF. (in Portuguese)Google Scholar
  23. Brazil (2013) MAPA/ANVISA/IBAMA Joint Normative Instruction No. 1, April 18th, 2013. Establish criteria and procedures regarding amendments in registered pesticides formulations.Union Official Journal No. 76, Section 1, pg 4. published in Apr. 22Nd,2013, Brasília, DF. (in Portuguese)Google Scholar
  24. Brazil (1989) Law no. 7.802, July 11th, 1989. Rules about research, experimentation, production, packaging and labeling, transporation, storage, commercialization, commercial advertising, utilization, importation, exportation, final destination of residues and packages, registration classification, control, inspection and surveillance of pesticides, their compontents and related products, and gives other providences. Union Official Journal no. 131, Section 1, pg. 11459, published in Jul 12th,1989, Brasília, DF. (in Portuguese).Google Scholar
  25. Brazil (1992) Normative Instruction No. 5, October 20th,1992. Establish procedures to be followed upon compliance with the provisions in the Ministerial Ordinance No. 202, april 28th, 1989. Union Official Journal No. 202, Section 1, pg 60, published in Oct. 21st,1992, Brasília, DF. (in Portuguese).Google Scholar
  26. Brazil (1996) IBAMA Normative Ordinance No. 84, October 15th,1996. Establish procedures to be adopted in the Brazilian Institute of Environment and Renewable Natural Resources – IBAMA, for registration purposes and for assessment of the potential environmental hazard (PPA) of pesticides. Union Official Journal No. 203, Section 1, pg 21358. published in Oct. 18th, 1996, Brasília, DF. (in Portuguese).Google Scholar
  27. Brazil (2002) Decree No. 4.074, January 4th,2002. Regulates Law No. 7.802, July 11th, 1989, that que Rules about research, experimentation, production, packaging and labeling, transporation, storage, commercialization, commercial advertising, utilization, importation, exportation, final destination of residues and packages, registration classification, control, inspection and surveillance of pesticides, their compontents and related products, and gives other providences. Union Official Journal No. 5, Section 1, pg 1. published in Jan. 8th, 2002, Brasília, DF. (in Portuguese).Google Scholar
  28. Brazil (2005) MAPA/ANVISA/IBAMA Joint Normative Instruction No. 32, October 26th,2005. Establish procedures to be adopted for registration purposes regarding biochemicals products that are characterized as technical grade products and pesticides, according to the definitions established in Decree No. 4.074, January 4th,2002., article. 1st, items XXXVII and IV. Union Official Journal No. 211, Section 1, pg 3. published in nov. 3rd, 2005, Brasília, DF. (in Portuguese).Google Scholar
  29. Brazil (2006a) MAPA/ANVISA/IBAMA Joint Normative Instruction No. 1, January 23rd, 2006. Establish procedures to be adopted for registration purposes regarding semiochemicals products that are characterized as technical grade products and pesticides, according to the definitions established in Decree No. 4.074, January 4th,2002., article. 1st, items XXXVII and IV. Union Official Journal No. 19, Section 1, pg 7. published in jan. 26th, 2006, Brasília, DF. (in Portuguese).Google Scholar
  30. Brazil (2006b) MAPA/ANVISA/IBAMA Joint Normative Instruction No. 3, March 10th, 2006. Establish procedures to be adopted for registration purposes regarding microbiological control agents applied in control of a population or biological activities of another living organism considered harmful.Union Official Journal No. 51, Section 1, pg 23 . published in mar. 5Th, 2006, Brasília, DF. (in Portuguese).Google Scholar
  31. Brazil (2006c) MAPA/ANVISA/IBAMA Joint Normative Instruction No. 2, September 27th, 2006. Establish procedures for agronomic, toxicologic or environmental, reevaluation of pesticides. Union Official Journal No. 188, Section 1, pg 126. published in sep. 29th, 2006, Brasília, DF. (in Portuguese).Google Scholar
  32. Brazilian Congress of Ecotoxicology. 8. 2004, Florianópolis. Abstracts. Florianópolis: Brazilian Society of Ecotoxicology, 2004. in PortugueseGoogle Scholar
  33. Brazilian Congress of Ecotoxicology. 12. 2012, Porto de Galinhas. Abstracts. Porto de Galinhas: Brazilian Society of Ecotoxicology, 2012. in PortugueseGoogle Scholar
  34. Brown GG, Callaham MA, Niva CC, Feijoo A, Sautter KD, James SW, Fragoso C, Schmelz RM PA (2013) Terrestrial oligochaete research in Latin America: the importance of the Latin American meetings on oligochaete ecology and taxonomy. Appl Soil Ecol 69:2–12. doi: 10.1016/j.apsoil.2012.12.006 CrossRefGoogle Scholar
  35. Brown GG, James SW, Pasini A, Nunes DH, Bento NP, Martins PT, Sautter KD (2006) Exotic, peregrine, and invasive earthworms in Brazil: diversity, distribution, and effects on soils and plants. Caribbean J Sci 42:339–358Google Scholar
  36. Buch AC, Brown GG, Niva CC, Sautter KD, Sousa JP (2013) Toxicity of three pesticides commonly used in Brazil to Pontoscolex corethrurus and Eisenia andrei. Appl Soil Ecol 69:32–38. doi: 10.1016/j.apsoil.2012.12.011 CrossRefGoogle Scholar
  37. Buch AC, Brown GG, Niva CC, Sautter KD, Lourençato LF (2011) Life cycle of Pontoscolex corethrurus (Müller, 1857) in tropical artificial soil. Pedobiologia 54:S19–S25. doi: 10.1016/j.pedobi.2011.07.007 CrossRefGoogle Scholar
  38. Buch AC, Niemeyer JC, Correia MEF, Silva-Filho EV (2016) Ecotoxicity of mercury to Folsomia candida and Proisotoma minuta (Collembola: Isotomidae) in tropical soils: baseline for ecological risk assessment. Ecotoxicol Environ Saf 127:22–29. doi: 10.1016/j.ecoenv.2016.01.009 CrossRefGoogle Scholar
  39. Cantelli KB (2011) Acute toxicity of carbofuran and carbendazim to earthworms in natural soil. Dissertation, Universidade Federal do Paraná, Brazil, in PortugueseGoogle Scholar
  40. Carniel LSC (2015) Ecological risk assessment of Mancozeb and Chlorpyriphos to soil fauna and the study of efficiency of biobeds to pesticides disposal. Dissertation, Universidade do Estado de Santa Catarina, Lages, Brazil, in PortugueseGoogle Scholar
  41. Castro-Ferreira MP, Roelofs D, van Gestel CA, Verweij RA, Soares AM, Amorim MJ (2012) Enchytraeus crypticus as model species in soil ecotoxicology. Chemosphere 87:1222–1227. doi: 10.1016/j.chemosphere.2012.01.021 CrossRefGoogle Scholar
  42. Cesar RG, Coelho MB, Alvaro TT, Colonese JP, Castilhos ZC, Egler SG SG, Bidone ED, Polivanov H, Alexandre NZ (2013) Terrestrial disposal of coal mining residues: acid drainage, acute ecotoxicity and bioavailability of heavy metals. Ecotoxicol Environ Contam 8:17–22. doi: 10.5132/eec.2013.02.003 Google Scholar
  43. Cesar R, Natal-da-Luz T, Sousa JP, Colonese J, Bidone E, Castilhos Z, Egler S, Polivanov H (2014a) Disposal of dredged sediments in tropical soils: ecotoxicological effects on earthworms. Environ Monit Assess 186:487–1497. doi: 10.1007/s10661-013-3468-9 CrossRefGoogle Scholar
  44. Cesar RG, Rodrigues AP, Bidone E, Castilhos Z, Polivanov H, Campos T (2015) Proposal of an index of ecological risk for a sustainable disposal of dredged sediments in latosols and chernosols. Geociencias 34:275–285 (in Portuguese)Google Scholar
  45. Cesar RG, Castilhos ZC, Rodrigues AP, Bidone ED, Egler SG, Polivanov H (2014b) (Eco)toxicology of metals in soil: concepts, methods and interface with environmental geochemistry. Cetem, Rio de Janeiro (in Portuguese)Google Scholar
  46. CETESB Companhia de Tecnologia de Saneamento Ambiental (1990) Soil: toxicity test with Eisenia foetida (earthworm): test method. Technical norm L6.401. Cetesb, São Paulo, p 13, In PortugueseGoogle Scholar
  47. Chelinho S, Lopes I, Natal-da-Luz T et al (2012) Integrated ecological risk assessment of pesticides in tropical ecosystems: a case study with carbofuran in Brazil. Environ Toxicol Chem 31:437–445CrossRefGoogle Scholar
  48. Chelinho S, Sautter KD, Cachada A et al (2011) Carbofuran effects in soil nematode communities: using trait and taxonomic based approaches. Ecotoxicol Environ Saf 74:2002–2012CrossRefGoogle Scholar
  49. Chiochetta CG, Radetski MR, Corrêa AX, Tischer V, Tiepo EN, Radetski CM (2013) Abandoned coal mining sites: using ecotoxicological tests to support an industrial organic sludge amendment. Environ Sci Pollut Res 20:7656–7665CrossRefGoogle Scholar
  50. Christoffersen ML (2008) A catalogue of the Pontoscolex genus-group other than Rhinodrilus from South America (Annelida, Clitellata, Lumbricina, Glossoscolecidae). Senckenb biol 88:1–19Google Scholar
  51. Cruz JM, Lopes PRM, Montagnolli RN, Tamada IS, Silva NMMG, Bidoia ED (2013) Phytotoxicity of soil contaminated with petroleum derivatives and biodiesel. Ecotoxicol Environ Contam 8:49–54Google Scholar
  52. Da Silva-Junior FMR, Vargas VMF (2009) Using the Salmonella assay to delineate the dispersion routes of mutagenic compounds from coal wastes in contaminated soil. Mutat Res 673:116–123. doi: 10.1016/j.mrgentox.2008.12.005 CrossRefGoogle Scholar
  53. Da Silva-Júnior FMR, Silva PF, Guimarães FS, De Almeida KA, Baisch P, Muccillo-Baisch AL (2014) Ecotoxicological tools for landfarming soil evaluation in a petrochemical complex area. Pedosphere 24:280–284. doi: 10.1016/S1002-0160(14)60014-X CrossRefGoogle Scholar
  54. Da Silva-Júnior FMR, De Almeida KA, Silva PF, Muccillo-Baisch AL (2013) Hematological profile as a crude oil exposure-related marker in wild rodent. J BioSci Biotechnol 2:89–94Google Scholar
  55. De Sousa APA, de Andréa MM (2011) Earthworm (Eisenia andrei) avoidance of soils treated with cypermethrin. Sensors (Basel) 11:11056–11163CrossRefGoogle Scholar
  56. De Souza MR, da Silva FR, de Souza CT, Niekraszewicz L, Dias JF, Premoli S, Da Silva C, Soares MC, Marroni NP, Morgam-Martins MI, da Silva J (2015) Evaluation of the genotoxic potential of soil contaminated with mineral coal tailings on snail Helix aspersa. Chemosphere 139:512–517. doi: 10.1016/j.chemosphere.2015.07.071 CrossRefGoogle Scholar
  57. Domene X, Colón J, Uras MV, Izquierdo R, Avila A, Alcañiz J (2010) Role of soil properties in sewage sludge toxicity to soil collembolans. Soil Biol Biochem 42:1982–1990. doi: 10.1016/j.soilbio.2010.07.019 CrossRefGoogle Scholar
  58. Ferreira CRPT, Vegro CLR, Camargo MLB (2010) Agricultural defensives: sales growth expectations in 2010. Análises e Indicadores do Agronegócio 5:1–5 (in Portuguese)Google Scholar
  59. Ferreira EPDB, Dusi AN, Costa JR, Xavier GR, Rumjanek NG (2009) Assessing insecticide and fungicide effects on the culturable soil bacterial community by analyses of variance of their DGGE fingerprinting data. Eur J Soil Biol 45:466–472. doi: 10.1016/j.ejsobi.2009.07.003 CrossRefGoogle Scholar
  60. Ferreira RC, Papini S, de Andréa MM (2015) Bioavailability and influence of 14C-carbofuran on Eisenia andrei avoidance, growth and reproduction in treated natural tropical soils. J Environ Sci Health, Part B 50(4):266–274. doi: 10.1080/03601234.2015.999599 CrossRefGoogle Scholar
  61. Garcia M, Römbke J, de Brito MT, Scheffczyk A (2008) Effects of three pesticides on the avoidance behavior of earthworms in laboratory tests performed under temperate and tropical conditions. Environ Pollut 153:450–456. doi: 10.1016/j.envpol.2007.08.007 CrossRefGoogle Scholar
  62. Garcia M, Scheffczyk A, Garcia T, Römbke J (2011) The effects of the insecticide lambda-Cyhalothrin on the earthworm Eisenia fetida under experimental conditions of tropical and temperate regions. Environ Pollut 159:398–400. doi: 10.1016/j.envpol.2010.10.038 CrossRefGoogle Scholar
  63. Garcia M (2004) Effects of pesticides on soil fauna: development of ecotoxicological test methods for tropical regions, PhD Thesis. Hohen Landwirtschaftlichen Fakultät, Universität BonnGoogle Scholar
  64. IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) (1990) Test Manual for ecotoxicity Assessment of Chemical Agents of. Part D.5.1 Assessment of toxicity to soil organisms - earthworms. (In Portuguese)Google Scholar
  65. IBAMA (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis) (2012) Pesticides and associated: sales history from 2000 to 2012. Ibama, Brasília, p 42, In PortugueseGoogle Scholar
  66. Ichinose AM, Machado Neto JG, Zagatto PA (1996) Acute toxicity for earthworms (Eisenia foetida) in agricultural soils, sand, and artsol substrate, in laboratory conditions. Rev Bras Toxicol 9:21–26 (in Portuguese)Google Scholar
  67. ISO (International Organization for Standardization) (1993) Soil quality—effects of pollutants on earthworms (Eisenia fetida)—part 1: determination of acute toxicity using artificial soil substrate. ISO 11268-1, Geneva, SwitzerlandGoogle Scholar
  68. ISO (International Organization for Standardization) (1998) Soil quality—effects of pollutants on earthworms (Eisenia fetida). Part 2: determination of effects on reproduction. ISO 11268-2, Geneva, SwitzerlandGoogle Scholar
  69. ISO (International Organization for Standardization) (2011) Soil quality—effects of pollutants on earthworms (Eisenia fetida)—part 1: determination of acute toxicity using artificial soil substrate. ISO 11268-1, Geneve, SwitzerlandGoogle Scholar
  70. ISO (International Organization for Standardization) (2015) Soil quality—method for testing effects of soil contaminants on the feeding activity of soil dwelling organisms—Bait-lamina test. ISO 18311, Geneva, SwitzerlandGoogle Scholar
  71. Jänsch S, Garcia M, Römbke J (2005) Acute and chronic isopod testing using tropical Porcellionides pruinosus and three model pesticides. Eur J Soil Biol 41:143–152. doi: 10.1016/j.ejsobi.2005.09.010 CrossRefGoogle Scholar
  72. Jensen J, Mesman M (eds) (2006) Ecological risk assessment of contaminated land—decision support for site specific investigations. RIVM report 711701047, The NetherlandsGoogle Scholar
  73. Lavelle P, Barois I, Cruz I, Fragoso C, Hernandez A, Pineda A, Rangel P (1987) Adaptive strategies of Pontoscolex corethrurus (Glossoscolecidae, Oligochaeta), a peregrine geophagous earthworm of the humid tropics. Biol Ferti Soils 5:188–194CrossRefGoogle Scholar
  74. Leal RMP, Figueira RF, Tornisielo VL, Regitano JB (2012) Occurrence and sorption of fluoroquinolones in poultry litters and soils from São Paulo State, Brazil. Sci Total Environ 432:344–349. doi: 10.1016/j.scitotenv.2012.06.002 CrossRefGoogle Scholar
  75. Lee KE (1985) Earthworms—their ecology and relationships with soils and land use. Academic Press. 411 pp.Google Scholar
  76. Lopes PRM, Montagnolli RN, De Fátima Domingues R, Dino Bidoia ED (2010) Toxicity and biodegradation in sandy soil contaminated by lubricant oils. Bull Environ Contam Toxicol 84:454–458. doi: 10.1007/s00128-010-9945-8 CrossRefGoogle Scholar
  77. Maranho LT, Dziedzic M, Muñiz GIB, Kuniyoshi GF (2009) Effects of the pollution by petroleum on the tracheids along the stem of Podocarpus lambertii Klotzsch ex Endl., Podocarpaceae. Braz J Biol 69:263–269. doi: 10.1590/S1519-69842009000200005 CrossRefGoogle Scholar
  78. Nakatani AS, Mescolotti DL, Nogueira MA, Martines AM, Miyauchi MY, Stürmer SL, Cardoso EJ (2011) Dosage-dependent shift in the spore community of arbuscular mycorrhizal fungi following application of tannery sludge. Mycorrhiza 21:515–522. doi: 10.1007/s00572-010-0359-6 CrossRefGoogle Scholar
  79. Niemeyer JC, Dos Santos V, Rodrigues JML, Da Silva EM (2006a) Behavior of Cubaris murina Brandt (Crustacea:Isopoda) in soil with Glyphosate: avoidance behavior tests in laboratory. J Braz Soc Ecotoxicol 1:13–16. doi: 10.5132/jbse.2006.01.003 (in Portuguese)CrossRefGoogle Scholar
  80. Niemeyer JC, Lolata GB, Carvalho GM, Da Silva EM, Sousa JP, Nogueira MA (2012a) Microbial indicators of soil health as tools for ecological risk assessment of a metal contaminated site in Brazil. Appl Soil Ecol 59:96–105. doi: 10.1016/j.apsoil.2012.03.019 CrossRefGoogle Scholar
  81. Niemeyer JC, Moreira-Santos M, Nogueira MA, Carvalho GM, Ribeiro R, Da Silva EM, Sousa JP (2010) Environmental risk assessment of a metal-contaminated area in the Tropics. Tier I: screening phase. J Soils Sediments 10:1557–1571. doi: 10.1007/s11368-010-0255-x CrossRefGoogle Scholar
  82. Niemeyer JC, Moreira-Santos M, Ribeiro R, Rutgers M, Nogueira MA, Da Silva EM, Sousa JP (2015) Ecological risk assessment of a metal-contaminated area in the tropics. Tier II: detailed assessment. Plos One 10:e0141772. doi: 10.1371/journal.pone.0141772 CrossRefGoogle Scholar
  83. Niemeyer JC, Nogueira MA, Carvalho GM, Cohin-De-Pinho SJ, Outeiro US, Rodrigues GG, Da Silva EM, Sousa JP (2012b) Functional and structural parameters to assess the ecological status of a metal contaminated area in the tropics. Ecotoxicol Environ Saf 86:188–197. doi: 10.1016/j.ecoenv.2012.09.013 CrossRefGoogle Scholar
  84. Niemeyer JC, Santos VC, Araújo PB, da Silva EM (2009) Reproduction of Cubaris murina (Crustacea: Isopoda) under laboratory conditions and its use in ecotoxicity tests. Braz J Biol 69:137–142. doi: 10.1590/S1519-69842009000100017 CrossRefGoogle Scholar
  85. Niemeyer JC, Vilaça D, Da Silva EM (2006b) Effects of soil with Glyphosate on the biomass of Cubaris murina Brandt (Crustacea:Isopoda). J Braz Soc Ecotoxicol 1:17–20. doi: 10.5132/jbse.2006.01.004 (in Portuguese)CrossRefGoogle Scholar
  86. Niva CC, Brown GG (2016) Terrestrial Ecotoxicology: methods and applications of tests with oligochaetes (in Portuguese) (in press)Google Scholar
  87. Niva CC, Tenorio Nunes MET, de Menezes Oliveira VB, Römbke J (2014) Report on a Special Session at the XIII. Brazilian Congress of Ecotoxicology. SETAC Globe 15: 2 pages.Google Scholar
  88. Niva CC, Schmelz RM, Brown GG (2010) Notes on the reproduction, fragmentation and regeneration of Enchytraeus dudichi Dózsa-Farkas, 1995 sensu lato (Enchytraeidae, Oligochaeta) found in Paraná State, Brazil. Landbauforschung – vTI Agriculture and Forestry Research, Special Issue 357:13–19Google Scholar
  89. Nogarol LR, Fontanetti CS (2010) Acute and subchronic exposure of diplopods to substrate containing sewage mud: tissular responses of the midgut. Micron 41:239–246. doi: 10.1016/j.micron.2009.10.009 CrossRefGoogle Scholar
  90. Nunes ME, Espíndola EL (2012) Sensitivity of Eisenia andrei (Annelida, Oligochaeta) to a commercial formulation of abamectin in avoidance tests with artificial substrate and natural soil under tropical conditions. Ecotoxicology 21:1063–1071. doi: 10.1007/s10646-012-0859-6 CrossRefGoogle Scholar
  91. Nunes MET, Daam MA, Espíndola ELG (2016) Survival, morphology and reproduction of Eisenia andrei (Annelida, Oligochaeta) as affected by Vertimec® 18 EC (a.i. abamectin) in tests performed under tropical conditions. Appl Soil Ecol 100:18–26. doi: 10.1016/j.apsoil.2015.11.023 CrossRefGoogle Scholar
  92. OECD - Organization for Economic Co-operation and Development (1984a) OECD—Guideline for Testing of Chemicals No. 207. Earthworm Acute Toxicity Test, Paris, FranceGoogle Scholar
  93. OECD - Organization for Economic Co-operation and Development (1984b) OECD—Guideline for Testing of Chemicals No. 208. Terrestrial Plants, Growth Test, Paris, FranceGoogle Scholar
  94. Oliveira Filho LCI, Segat JC, Klauberg-Filho O, Baretta D (eds) (2016) Ecotoxicologia terreste: métodos com Collembola e Isopoda. Editora da UDESC, Florianópolis ou Joinville, p 216, in PortugueseGoogle Scholar
  95. Papini S, Andréa MM (2001) Soil dissipation of simazine by action of earthworms (Eisenia foetida). Rev Bras Ciênc Solo 25:593–599. doi: 10.1590/S0100-06832001000300008 (in Portuguese)CrossRefGoogle Scholar
  96. Papini S, Andréa MM, Luchini LC (2015) Environmental safety in chemical control pest and vectors. Atheneu, São Paulo (in Portuguese)Google Scholar
  97. Peruchi LM, Fostier AH, Rath S (2015) Sorption of norfloxacin in soils: analytical method, kinetics and Freundlich isotherms. Chemosphere 119:310–317. doi: 10.1016/j.chemosphere.2014.06.008 CrossRefGoogle Scholar
  98. Römbke J, Garcia MV, Scheffczyk A (2007) The effects of the fungicide benomyl on earthworms in laboratory tests under tropical and temperate conditions. Arch Environ Contam Toxicol 53:590–598. doi: 10.1007/s00244-006-0219-8 CrossRefGoogle Scholar
  99. Römbke J, Höfer H, Garcia MVB, Martius C (2006) Feeding activities of soil organisms at four different forest sites in Amazonia using the bait lamina method. J Trop Ecol 22:313–320. doi: 10.1017/S0266467406003166 CrossRefGoogle Scholar
  100. Römbke J, Waichman AV, Garcia MVB (2008) Risk assessment of pesticides for soils of the Central Amazon, Brazil: comparing outcomes with temperate and tropical data. Integr Environ Assess Manag 4:94–104. doi: 10.1897/IEAM_2007-052 CrossRefGoogle Scholar
  101. Rutgers M, Tuinstra J, Spijker J, Mesman M, Wintersen A, Posthuma L (2008) Ecological risks of soil contamination in the second step of the remediation criterion (in Dutch with English summary). Report 711701072, RIVM, Bilthoven, the NetherlandsGoogle Scholar
  102. Santos HG, Jacomine PKT, Anjos LHC, Oliveira VA, Oliveira JB, Coelho MR, Lumbreras JF, Cunha TJF (eds) (2006) Brazilian system of soil classification, 2nd edn. Embrapa Solos, Rio de Janeiro, p 306, in PortugueseGoogle Scholar
  103. Schmelz RM, Niva CC, Römbke J, Collado R (2013) Diversity of terrestrial Enchytraeidae (Oligochaeta) in Latin America: current knowledge and future research potential. Appl Soil Ecol 69:13–20. doi: 10.1016/j.apsoil.2012.12.012 CrossRefGoogle Scholar
  104. Segat JC (2012). Ecotoxicological evaluation on the use of swine manure in soils of Santa Catarina State. (Thesis), Escola Superior de Agricultura “Luiz de Queiróz”.Google Scholar
  105. Segat JC, Lopes Alves PR, Baretta D, Jurandy Bran Nogueira Cardoso E (2015) Ecotoxicological evaluation of swine manure disposal on tropical soils in Brazil. Ecotoxicol Environ Saf 122:91–97. doi: 10.1016/j.ecoenv.2015.07.017 CrossRefGoogle Scholar
  106. Silva PMCS, Van Gestel CAM (2009) Comparative sensitivity of Eisenia andrei and Perionyx excavatus in earthworm avoidance tests using two soil types in the tropics. Chemosphere 77:1609–1613. doi: 10.1016/j.chemosphere.2009.09.034 CrossRefGoogle Scholar
  107. Sisinno CLS, Bulus MRM, Rizzo ACL, Moreira JC (2006) Avoidance behavior tests with earthworms (Eisenia fetida) to assess contaminated sites: preliminar studies for hydrocarbons contamination. J Braz Soc Ecotoxicol 1:137–140. doi: 10.5132/jbse.2006.02.009 (in Portuguese)CrossRefGoogle Scholar
  108. Sisinno CLS, Rizzo ACL, Bulus MRM, Rocha DA, Soriano AU, Vital RL, Moreira JC (2007) Application of ecotoxicological tests in a preliminary evaluation of soils treated on bioreactor. J Braz Soc Ecotoxicol 2:157–161. doi: 10.5132/jbse.2007.02.008 CrossRefGoogle Scholar
  109. Stefani A Jr, Felício JD, de Andréa MM (2012) Comparative assessment of the effect of synthetic and natural fungicides on soil respiration. Sensors (Basel) 12:3243–3252. doi: 10.3390/s120303243 CrossRefGoogle Scholar
  110. Sundfeld CA, Câmara JA (2011) Dangerous products: how the regulation balance conflictants interests? Revista Brasileira de Direito Público - RBDP 9(34) <http://bdjur.stj.jus.br/dspace/handle/2011/42689>. Acessed 24 november 2011
  111. Suter GW, Efroymson RA, Sample BE, Jones DS (2000) Ecological risk assessment for contaminated sites. CRC, Lewis, Boca RatonCrossRefGoogle Scholar
  112. Tamada IS, Montagnolli RN, Lopes PRM, Bidoia ED (2012) Toxicological evaluation of vegetable oils and biodiesel in soil during the biodegradation process. Braz J Microbiol 43:1576–1581. doi: 10.1590/S1517-83822012000400042 CrossRefGoogle Scholar
  113. Thiele-Bruhn S (2003) Pharmaceutical antibiotic compounds in soil—a review. J Plant Nutr Soil Sci 166:145–167. doi: 10.1002/jpln.200390023 CrossRefGoogle Scholar
  114. USEPA, 1998. Guidelines for ecological risk assessment. US Environmental Protection Agency, Risk Assessment Forum, EPA/630/R-95/002F. Available: http://www.epa.gov/raf/publications/pdfs/ECOTXTBX.PDF
  115. Weeks JM, Sorokin N, Johnson I, Whitehouse P, Ashton D, Spurgeon D, Hankard P, Svendsen C, Hart A (2004) Biological test methods for assessing contaminated land, stage 2: a demonstration of the use of a framework for the ecological risk assessment of land contamination. Environment Agency of England and Wales, Science Report P5-069/TR1Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Cintia Carla Niva
    • 1
    Email author
  • Julia Carina Niemeyer
    • 2
  • Flávio Manoel Rodrigues Da Silva Júnior
    • 3
  • Maria Edna Tenório Nunes
    • 4
  • Danilo Lourenço De Sousa
    • 5
  • Clara Wandenkolck Silva Aragão
    • 5
  • Klaus Dieter Sautter
    • 6
  • Evaldo Gaeta Espindola
    • 7
  • José Paulo Sousa
    • 8
  • Jörg Römbke
    • 9
  1. 1.Embrapa CerradosBrasiliaBrazil
  2. 2.Universidade Federal de Santa Catarina (UFSC), Campus de CuritibanosCuritibanosBrazil
  3. 3.Instituto de Ciências BiológicasUniversidade Federal do Rio Grande (FURG)Rio GrandeBrazil
  4. 4.Programa de Pós-graduação em Ciências da Engenharia Ambiental/EESC/USP, Núcleo de Ecotoxicologia e Ecologia Aplicada, CRHEA/EESC/USPSão CarlosBrazil
  5. 5.Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis (IBAMA), Diretoria de Qualidade Ambiental, Coordenação de Avaliação Ambiental de Produtos PerigososBrasíliaBrazil
  6. 6.Universidade Positivo, Pós-Graduação em Gestão AmbientalCuritibaBrasil
  7. 7.Departamento de Hidráulica e Saneamento/EESC/USPSão CarlosBrazil
  8. 8.Department of Life SciencesUniversidade de Coimbra, Centre for Functional Ecology, University of CoimbraCoimbraPortugal
  9. 9.ECT Oekotoxikologie GmbHFlörsheim am MainGermany

Personalised recommendations