Environmental Science and Pollution Research

, Volume 23, Issue 14, pp 14123–14146 | Cite as

Mediterranean aerosol typing by integrating three-wavelength lidar and sun photometer measurements

  • M. R. Perrone
  • P. Burlizzi
Research Article


Backscatter lidar measurements at 355, 532, and 1064 nm combined with aerosol optical thicknesses (AOTs) from sun photometer measurements collocated in space and time were used to retrieve the vertical profiles of intensive and extensive aerosol parameters. Then, the vertical profiles of the Ångström coefficients for different wavelength pairs (Å1, λ2, z)), the color ratio (CR(z)), the fine mode fraction (η(z)) at 532 nm, and the fine modal radius (R f (z)), which represent aerosol characteristic properties independent from the aerosol load, were used for typing the aerosol over the Central Mediterranean. The ability of the Ångström coefficients to identify the main aerosol types affecting the Central Mediterranean with the support of the backward trajectory analysis was first demonstrated. Three main aerosol types, which were designed as continental-polluted (CP), marine-polluted (MP), and desert-polluted (DP), were identified. We found that both the variability range and the vertical profile structure of the tested aerosol intensive parameters varied with the aerosol type. The variability range and the altitude dependence of the aerosol extinction coefficients at 355, 532, and 1064 nm, respectively, also varied with the identified aerosol types even if they are extensive aerosol parameters. DP, MP, and CP aerosols were characterized by the Å(532, 1064 nm) mean values ± 1 standard deviation equal to 0.5 ± 0.2, 1.1 ± 0.2, 1.6 ± 0.2, respectively. η(%) mean values ± 1SD were equal to 50 ± 10, 73 ± 7, and 86 ± 6 for DP, MP, and CP aerosols, respectively. The R f and CR mean values ± 1SD were equal to 0.16 ± 0.05 μm and 1.3 ± 0.3, respectively, for DP aerosols; to 0.12 ± 0.03 μm and 1.8 ± 0.4, respectively, for MP aerosols; and to 0.11 ± 0.02 μm and 1.7 ± 0.4, respectively, for CP aerosols. CP and DP aerosols were on average responsible for greater AOT and LR values, but the LR and AOT dependence on wavelength was stronger for CP than for DP aerosols. The plots of the lidar ratio values at 355 nm versus the mean columnar values of the 532–1064 nm Ångström coefficient (Å c), the fine mode radius, the fine mode fraction at 532 nm (η c), and the color ratio, respectively, furthermore revealed the greater ability of the Å c and η c values to characterize different aerosol types.


Remote sensing Vertically resolved particle properties Mediterranean aerosol properties Aerosol properties for climate change studies 



P. Burlizzi has carried out the work with the support of a fellowship from the Mathematics and Physics Department of Università del Salento. The financial support for EARLINET in the ACTRIS Research Infrastructure Project by the European Union’s Horizon 2020 research and innovation program under grant agreement n. 654169 and previously under grant agreement n. 262254 in the 7th Framework Programme (FP7/2007-2013) is gratefully acknowledged. The authors would like to acknowledge the Barcelona Super-Computing Center for the provision of the DREAM model data. The NOAA Air Resources Laboratory is kindly acknowledged for the provision of the HYSPLIT back trajectories. MODIS data were made available from the Goddard Laboratory sciences Data Center.


  1. Barnaba F, De Tomasi F, Gobbi GP, Perrone MR, Tafuro A (2004) Extinction versus backscatter relationships for lidar applications at 351 nm: maritime and desert aerosol simulations and comparison with observations. Atm Res 70:229–259CrossRefGoogle Scholar
  2. Barnaba F, Tafuro AM, De Tomasi F, Perrone MR (2007) Observed and simulated vertically resolved optical properties of continental aerosols over southeastern Italy: a closure study. J Geophys Res 112:D10203. doi: 10.1029/2006JD007926 CrossRefGoogle Scholar
  3. Basart S, Perez C, Cuevas E, Baldasano JM, Gobbi GP (2009) Aerosol characterization in Northern Africa, Northeastern Atlantic, Mediterranean Basin and Middle East from direct-sun AERONET observations. Atmos Chem Phys 9:8265–8282CrossRefGoogle Scholar
  4. Bergamo A, Tafuro AM, Kinne S, De Tomasi F, Perrone MR (2008) Monthly-averaged anthropogenic aerosol direct radiative forcing over the Mediterranean from AERONET derived aerosol properties. Atmos Chem Phys 8:6995–7014CrossRefGoogle Scholar
  5. Binietoglou I, Basart S, Alados-Arboledas L, Amiridis V, Argyrouli A, Baars H, Baldasano JM, Balis D, Belegante L, Bravo-Aranda JA, Burlizzi P, Carrasco V, Chaikovsky A, Comerón A, D’Amico G, Filioglou M, Granados-Muñoz MJ, Guerrero-Rascado JL, Ilic L, Kokkalis P, Maurizi A, Mona L, Monti F, Muñoz-Porcar C, Nicolae D, Papayannis A, Pappalardo G, Pejanovic G, Pereira SN, Perrone MR, Pietruczuk A, Posyniak M, Rocadenbosch F, Rodríguez-Gómez A, Sicard M, Siomos N, Szkop A, Terradellas E, Tsekeri A, Vukovic A, Wandinger U, Wagner J (2015) A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals. Atmos Meas Tech 8:3577–3600. doi: 10.5194/amt-8-3577–2015 CrossRefGoogle Scholar
  6. Burton SP, Ferrare RA, Hostetler CA, Hair JW, Rogers RR, Obland MD, Butler CF, Cook AL, Harper DB, Froyd KD (2012) Aerosol classification using airborne High Spectral Resolution Lidar measurements—methodology and examples. Atmos Meas Tech 5:73–98. doi: 10.5194/amt-5-73-2012 CrossRefGoogle Scholar
  7. Cattrall C, Reagan J, Thome K, Dubovik O (2005) Variability of aerosol and spectral lidar and backscatter and extinction ratios of key aerosol types derived from selected Aerosol Robotic Network locations. J Geophys Res 110:D10S11. doi: 10.1029/2004JD005124 CrossRefGoogle Scholar
  8. Chaikovsky A, Dubovik O, Holben B, Bril A, Goloub P, Tanré D, Pappalardo G, Wandinger U, Chaikovskaya L, Denisov S, Grudo Y, Lopatin A, Karol Y, Lapyonok T, Amiridis V, Ansmann A, Apituley A, Allados-Arboledas L, Binietoglou I, Boselli A, D’Amico G, Freudenthaler V, Giles D, Granados-Muñoz MJ, Kokkalis P, Nicolae D, Oshchepkov S, Papayannis A, Perrone MR, Pietruczuk A, Rocadenbosch F, Sicard M, Slutsker I, Talianu C, De Tomasi F, Tsekeri A, Wagner J, Wang X (2015) Lidar-Radiometer Inversion Code (LIRIC) for the retrieval of vertical aerosol properties from combined lidar/radiometer data: development and distribution in EARLINET. Atmos Meas Tech Discuss 8:12759–12822. doi: 10.5194/amtd-8-12759-2015 CrossRefGoogle Scholar
  9. Chou C, Formenti P, Maille M, Ausset P, Helas G, Harrison M, Osborne S (2008) Size distribution, shape, and composition of mineral dust aerosols collected during the African Monsoon Multidisciplinary Analysis Special Observation Period: Dust and Biomass-Burning Experiment field campaign in Niger, January 2006. J Geophys Res 113:D00C10. doi: 10.1029/2008JD009897 CrossRefGoogle Scholar
  10. D’Almeida GA, Koepke P, Shettle EP (1991) Atmospheric aerosols—global climatology and radiative characteristics. A. Deepak Publishing, Hampton, p 561Google Scholar
  11. De Tomasi F, Perrone MR (2003) Lidar measurements of tropospheric water vapor and aerosol profiles over southeastern Italy. J Geophys Res 108:4286–4297. doi: 10.1029/2002JD002781 CrossRefGoogle Scholar
  12. Di Girolamo P, Cacciani M, Sarra AD, Fiocco G, Fuà D (1994) Lidar observations of the Pinatubo aerosol layer at Thule, Greenland. Geophys Res Lett 21:1295–1298CrossRefGoogle Scholar
  13. Draxler RR, Hess GD (1998) An overview of the HYSPLIT_4 modeling system of trajectories, dispersion, and deposition. Aust Meteorol Mag 47:295–308Google Scholar
  14. Dubovik O, Holben BN, Eck TF, Smirnov A, Kaufman YJ, King MD, Tanre D, Slutsker I (2002) Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J Atmos Sci 59:590–608CrossRefGoogle Scholar
  15. Dubovik O, Sinyuk A, Lapyonok T, Holben BN, Mishchenko M, Yang P, Eck TF, Volten H, Muñoz O, Veihelmann B, van der Zande WJ, Leon JF, Sorokin M, Slutsker I (2006) Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust. J Geophys Res 111:D11208. doi: 10.1029/2005JD006619 CrossRefGoogle Scholar
  16. Gobbi GP, Kaufman YJ, Koren I, Eck TF (2007) Classification of aerosol properties derived from AERONET direct sun data. Atmos Chem Phys 7:453–458CrossRefGoogle Scholar
  17. Gómez-Amo JL, Pinti V, Di Iorio T, di Sarra A, Meloni D, Becagli S, Bellantone V, Cacciani M, Fuà D, Perrone MR (2011) The June 2007 Saharan dust event in the central Mediterranean: observations and radiative effects in marine, urban, and sub-urban environments. Atmos Environ 45:5385–5493CrossRefGoogle Scholar
  18. Granados-Muñoz MJ, Guerrero-Rascado JL, Bravo-Aranda JA, Navas-Guzmán F, Valenzuela A, Lyamani H, Chaikovsky A, Wandinger U, Ansmann A, Dubovik O, Grudo JO, Alados-Arboledas L (2014) Retrieving aerosol microphysical properties by lidar radiometer inversion code (LIRIC) for different aerosol types. J Geophys Res-Atmos 119:4836–4858CrossRefGoogle Scholar
  19. Groß S, Esselborn M, Weinzierl B, Wirth M, Fix A, Petzold A (2013) Aerosol classification by airborne high spectral resolution lidar observations. Atmos Chem Phys 13:2487–2505. doi: 10.5194/acp-13-2487-2013 CrossRefGoogle Scholar
  20. Guibert S, Matthias V, Schulz M, Bosenberg J, Eixmann R, Mattis I, Pappalardo G, Perrone MR, Spinelli N, Vaughan G (2005) The vertical distribution of aerosol over Europe—synthesis of one year of EARLINET aerosol lidar measurements and aerosol transport modeling with LMDzT–INCA. Atmos Environ 39:2933–2943CrossRefGoogle Scholar
  21. Holben BN, Eck TF, Slutsker I, Tanr’e D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnof A (1998) AERONET—a federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66(1):1–16. doi: 10.1016/S0034-4257(98)00031-5 CrossRefGoogle Scholar
  22. King MD, Kaufman YJ, Menzel WP, Tanrè D (1992) Remote sensing of cloud, aerosol, and water vapor properties from the Moderate Resolution Imaging Spectrometer (MODIS). IEEE Trans Geosci Remote Sens 30:2–27. doi: 10.1109/36.124212 CrossRefGoogle Scholar
  23. Lelieveld J, Berresheim H, Bormann S, Crutzen PJ, Dentener FJ et al (2002) Global air pollution crossroads over the Mediterranean. Science 298:794–799CrossRefGoogle Scholar
  24. Lopatin A, Dubovik O, Chaikovsky A, Goloub P, Lapyonok T, Tanré D, Litvinov P (2013) Enhancement of aerosol characterization using synergy of lidar and sun-photometer coincident observations: the GARRLiC algorithm. Atmos Meas Tech 6:2065–2088. doi: 10.5194/amt-6-2065-2013 CrossRefGoogle Scholar
  25. Mallet M, Dubovik O, Nabat P, Dulac F, Kahn R, Sciare J, Paronis D, Leon JF (2013) Absorption properties of Mediterranean aerosols obtained from multi-year ground-based remote sensing observations. Atmos Chem Phys 13:9195–9210CrossRefGoogle Scholar
  26. Mamouri RE, Ansmann A (2014) Fine and coarse dust separation with polarization lidar. Atmos Meas Tech 7:3717–3735. doi: 10.5194/amt-7-3717-2014 CrossRefGoogle Scholar
  27. Matthias V, Balis D, Bosenberg J, Eixmann R, Iarlori M, Komguem L, Mattis I, Papayannis A, Pappalardo G, Perrone MR, Wang X (2004) Vertical aerosol distribution over Europe: statistical analysis of Raman lidar data from 10 European Aerosol Research Lidar Network (EARLINET) stations. J Geophys Res 109:D18201. doi: 10.1029/2004JD004638 CrossRefGoogle Scholar
  28. Mona L, Papagiannopoulos N, Basart S, Baldasano J, Binietoglou I, Cornacchia C, Pappalardo G (2014) EARLINET dust observations vs. BSC-DREAM8b modeled profiles: 12-year-long systematic comparison at Potenza, Italy. Atmos Chem Phys 14:8781–8793. doi: 10.5194/acp-14-8781-2014 CrossRefGoogle Scholar
  29. Müller D, Ansmann A, Mattis I, Tesche M, Wandinger U, Althausen D, Pisani G (2007) Aerosol-typedependent lidar ratios observed with Raman lidar. J Geophys Res 112:D16202. doi: 10.1029/2006JD008292
  30. O’Neill NT, Eck TF, Smirnov A, Holben BN, Thulasiraman S (2003) Spectral discrimination of coarse and fine mode optical depth. J Geophys Res 108:4559–4573. doi: 10.1029/2002JD002975 CrossRefGoogle Scholar
  31. Omar A, Winker DM, Kittaka C, Vaughan CR, Liu Z, Vaughan MA, Hu Y, Trepte Rogers RR, Ferrare RA, Lee K-P, Kuehn RE, Hostetler CA (2009) The CALIPSO automated aerosol classification and lidar ratio selection algorithm. J Atmos Ocean Technol 26:1994–2014. doi: 10.1175/2009jtecha1231.1 CrossRefGoogle Scholar
  32. Papayanis A, Nicolae D, Kokkalis P, Binetoglou I, Talianu C, Belegante L, Tsaknakis G, Cazacu MM, Vetres I, Ilic I (2014) Optical, size and mass properties of mixed type aerosols in Greece and Romania as observed by synergy of lidar and sunphotometers in combination with model simulations: a case study. Sci Total Environ 500–501:277–294CrossRefGoogle Scholar
  33. Papayannis A, Amiridis V, Mona L, Tsaknakis G, Balis D, Bösenberg J, Chaikovski A, De Tomasi F, Grigorov I, Mattis I, Mitev V, Müller D, Nickovic S, Pérez C, Pietruczuk A, Pisani G, Ravetta F, Rizi V, Sicard M, Trickl T, Wiegner M, Gerding M, Mamouri RE, D’Amico G, Pappalardo G (2008) Systematic lidar observations of Saharan dust over Europe in the frame of EARLINET (2000-2002). J Geophys Res 113:D10204. doi: 10.1029/2007JD009028
  34. Perrone MR, Bergamo A (2011) Direct radiative forcing during Sahara dust intrusions at a site in the Central Mediterranean: anthropogenic particle contribution. Atmos Res 101:783–798CrossRefGoogle Scholar
  35. Perrone MR, Tafuro AM, Kinne S (2012) Dust layer effects on the atmospheric radiative budget and heating rate profiles. Atmos Environ 59:344–354CrossRefGoogle Scholar
  36. Perrone MR, Becagli S, Orza JAG, Vecchi R, Dinoi A, Udisti R, Cabello M (2013) The impact of long-range-transport on PM1 and PM2.5 at a Central Mediterranean site. Atmos Environ 71:176–186. doi: 10.1016/j.atmosenv.2013.02.006 CrossRefGoogle Scholar
  37. Perrone MR, De Tomasi F, Gobbi GP (2014a) Vertically resolved aerosol properties by multi wavelength lidar measurements. Atmos Chem Phys 14:1185–1204. doi: 10.5194/acp-14-1185-2014 CrossRefGoogle Scholar
  38. Perrone MR, Romano S, Orza JAG (2014b) Particle optical properties at a Central Mediterranean site: impact of advection routes and local meteorology. Atmos Res 145–146:152–167. doi: 10.1016/j.atmosres.2014.03.029 CrossRefGoogle Scholar
  39. Perrone MR, Burlizzi P (2015) Methodologies to obtain aerosol property profiles from three-wavelength elastic lidar signals. Int J Remote Sens 36(18):4748–4773CrossRefGoogle Scholar
  40. Perrone MR, Romano S, Orza JAG (2015) Columnar and ground-level aerosol optical properties: sensitivity to the transboundary pollution, daily and weekly patterns, and relationships. Environ Sci Pollut Res 22:16570–16589. doi: 10.1007/s11356-015-4850-7 CrossRefGoogle Scholar
  41. Pisani G, Boselli A, Spinelli N, Wang X (2011) Characterization of Saharan dust layers over Naples (Italy) during 2000–2003 EARLINET project. Atmos Res 102:286–299CrossRefGoogle Scholar
  42. Santese M, De Tomasi F, Perrone MR (2008) Advection patterns and aerosol optical and microphysical properties by AERONET over south-east Italy in the central Mediterranean. Atmos Chem Phys 8:1881–1896CrossRefGoogle Scholar
  43. Sayer AM, Smirnov A, Hsu NC, Munchak LA, Holben BN (2012) Estimating marine aerosol particle volume and number from Maritime Aerosol Network data. Atmos Chem Phys 12:8889–8909. doi: 10.5194/acp-12-8889-2012 CrossRefGoogle Scholar
  44. Schuster GL, Dubovick O, Holben BN (2006) Angstrom exponent and bimodal aerosol size distributions. J Geophys Res 111:D07207. doi: 10.1029/2005JD006328 CrossRefGoogle Scholar
  45. Seinfeld JH, Pandis SN (1998) Atmospheric chemistry and physics: from air pollution to climate change. J. Wiley & Sons, INC, New YorkGoogle Scholar
  46. Veselovskii I, Dubovik O, Kolgotin A, Korenskiy M, Whiteman DN, Allakhverdiev K, Huseylnoglu F (2012) Linear estimation of particle bulk parameters from multi-wavelength lidar measurements. Atmos Meas Tech 5:1135–1145. doi: 10.5194/amt-5-1135-2012
  47. Sicard M, Rocadenbosch F, Reba MNM, Comerón A, Tomás S, Garcıa-Vízcaino D, Batet O, Barrios R, Kumar D, Baldasano JM (2011) Seasonal variability of aerosol optical properties observed by means of a Raman lidar at an EARLINET site over northeastern Spain. Atmos Chem Phys 11:175–190. doi: 10.5194/acp-11-175-2011 CrossRefGoogle Scholar
  48. Wagner J, Ansmann A, Wandinger U, Seifert P, Schwarz A, Tesche M, Chaikovsky A, Dubovik O (2013) Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust. Atmos Meas Tech 6:1707–1724. doi: 10.5194/amt-6-1707-2013
  49. Wang W, Rood MJ, Carrico CM, Covert DS, Quinn PK, Bates TS (2007) Aerosol optical properties along the northeast coast of North America during the New England Air Quality Study–Intercontinental Transport and Chemical Transformation 2004 campaign and the influence of aerosol composition. J Geophys Res 112:D10S23. doi: 10.1029/2006JD007579 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Mathematics and Physics DepartmentUniversita’ del SalentoLecceItaly

Personalised recommendations