Skip to main content

Advertisement

Log in

Metal accumulation capacity of parasol mushroom (Macrolepiota procera) from Rasina region (Serbia)

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

During many years of industrial development, soil system was contaminated with large amounts of toxic metals. In order to investigate the mobility and availability of metals from soil to mushrooms, the content of 13 elements (Al, Ba, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sr, Ti, and Zn), in caps and stipes of wild-grown edible mushroom Macrolepiota procera and soil substrates, collected from five sites in Rasina region in central Serbia, was determined. Soil samples were subjected to the sequential extraction procedure proposed by the Community Bureau of Reference in order to fractionate acid-soluble/exchangeable, reducible, oxidizable, and residual fractions. Metal concentrations were determined by inductively coupled plasma optical emission spectrometer and inductively coupled plasma mass spectrometer and the results subjected to multivariate data analysis. A principal component analysis distinguished mushrooms samples from different geographical areas and revealed the influence of soil composition on metal content in mushrooms. Hierarchical cluster analyses confirmed that the first three phases of extraction were the most important for metal uptake by mushrooms from soil. The bioconcentration factors and translocation factors for each metal were also calculated. These results showed that M. procera could serve as a good dietary source of essential elements, especially Cu, Zn, Mn, and Fe but the consumption of mushrooms may pose a health risk for consumers during the “season of mushrooms,” due to the presence of cadmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aloupi M, Koutrotsios G, Koulousaris M, Kalogeropoulos N (2012) Trace metal contents in wild edible mushrooms growing on serpentine and volcanic soils on the island of Lesvos, Greece. Ecotox Environ Safe 78:184–194

    Article  CAS  Google Scholar 

  • Alvarez JM, Lopez-Valdivia LM, Novillo J, Obrador A, Rico MI (2006) Comparison of EDTE and sequential extraction tests for phytoavailability prediction of manganese and zinc in agricultural alkaline soils. Geoderma 132:450–463

    Article  CAS  Google Scholar 

  • Baptista P, Ferreira S, Soares E, Coelho V, Bastos MDL (2009) Tolerance and stress response of Macrolepiota procera to nickel. J Agric Food Chem 57:7145–7152

    Article  CAS  Google Scholar 

  • Benbrahim M, Denaix L, Thomas AL, Balet J, Carnus JM (2006) Metal concentrations in edible mushrooms following municipal sludge application on forest land. Environ Pollut 144:847–854

    Article  CAS  Google Scholar 

  • Blanuša M, Kučak A, Vernai VM, Sarić MM (2001) Uptake of cadmium, copper, iron, manganese and zink in mushrooms (Boletaceae) from Croatian forest soil. J AOAC Int 84(6):1964–1971

    Google Scholar 

  • Busuioc G, Elekes CC, Stihi C, Iordache S, Ciulei SC (2011) The bioaccumulation and translocation of Fe, Zn, and Cu in species of mushrooms from Russula genus. Environ Sci Pollut Res 18(6):890–896

    Article  CAS  Google Scholar 

  • Byrne AR, Ravnik V, Kosta L (1976) Trace element concentrations in higher fungi. Sci Total Environ 6:65–78

    Article  CAS  Google Scholar 

  • Chen XH, Zhou HB, Qiu GZ (2009) Analysis of several heavy metals in wild edible mushrooms from regions of China. Bull Environ Contam Toxicol 83:280–285

    Article  CAS  Google Scholar 

  • Cocchi L, Vescovi L, Petrini LE, Petrini O (2006) Heavy metals in edible mushrooms in Italy. Food Chem 98:277–284

    Article  CAS  Google Scholar 

  • Davidson CM, Duncan AL, Littlejohn D, Ure AM, Garden LM (1998) A critical evaluation of the three-stage BCR sequential extraction procedure to assess the potential mobility and toxicity of heavy metals in industrially-contaminated land. Anal Chim Acta 363:45–55

    Article  CAS  Google Scholar 

  • Dimitrijević MV, Mitić VD, Cvetković JS, Stankov Jovanović VP, Mutic JJ, Nikolić Mandić SD (2015) Update on element content profiles in eleven wild edible mushrooms from family Boletaceae. Eur Food Res Technol 242:1–10

    Article  Google Scholar 

  • EFSA (2006) Tolerable upper intake levels for vitamins and minerals; Scientific Committee on Food, Scientific Panel on Dietetic Products, Nutrition and Allergies. http://www.efsa.europa.eu/sites/default/files/efsa_rep/blobserver_assets/ndatolerableuil.pdf

  • EFSA (2008) Safety of aluminium from dietary intake; Scientific Opinion of the Panel on Food Additives, Flavourings, Processing Aids and Food Contact Materials (AFC). EFSA J 754:1–34

    Google Scholar 

  • EFSA (2009) Cadmium in food scientific opinion of the panel on contaminants in the Food Chain. EFSA J 980:1–139

    Google Scholar 

  • EFSA (2010) Scientific opinion on lead in food. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J 8(4):1570

    Article  Google Scholar 

  • EFSA (2011) Statement on tolerable weekly intake for cadmium. EFSA J 9(2):1975

    Article  Google Scholar 

  • EFSA (2012a) Guidance on selected default values to be used by the EFSA Scientific Committee, Scientific Panels and Units in the absence of actual measured data. EFSA J 10(3):2579

    Article  Google Scholar 

  • EFSA (2012b) Lead dietary exposure in the European population. EFSA J 10(7):2831

    Article  Google Scholar 

  • EFSA (2013) Scientific opinion on dietary reference values for manganese. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J 11(11):3419

    Article  Google Scholar 

  • EFSA (2014) Scientific opinion on dietary reference values for chromium; EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J 12(10):3845

    Article  Google Scholar 

  • EFSA (2015a) Scientific opinion on dietary reference values for copper. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J 13(10):4253

    Article  Google Scholar 

  • EFSA (2015b) Scientific opinion on dietary reference values for iron. EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). EFSA J 13(10):4254

    Article  Google Scholar 

  • EFSA (2015c) Scientific opinion on dietary reference values for cobalamin (vitamin B12). EFSA Panel on Dietetic Products, Nutrition, and Allergies (NDA). EFSA J 13(7):4150

    Article  Google Scholar 

  • EFSA (2015d) Scientific opinion on the risks to public health related to the presence of nickel in food and drinking water. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA J 13(2):4002

    Article  Google Scholar 

  • Elekes CC, Busuioc G (2010) The mycoremediation of metals polluted soila using wild growing species of mushrooms. Proceedings of the 7th WSEAS international conference on Latest trands on Eng Educ, Corfu Island Greece, 2010, pp. 36–39.

  • EU (2008) Commision Regulation (EC) No 629/2008 of 2 July 2008 amending Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Office J European Union 3.7.2008 L 173/6-9.

  • Falandysz J, Gucia M (2008) Bioconcentration factors of mercury by Parasol Mushroom (Macrolepiota procera). Environ Geochem Health 30:121–125

    Article  CAS  Google Scholar 

  • Falandysz J, Szymczyk K, Ichihashi H, Bielawski L, Gucia M, Frankowska A, Yamasaki SI (2001) ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit Contam 18:503–513

    Article  CAS  Google Scholar 

  • Falandysz J, Kubota R, Kunito T, Bielawski L, Brzostowski A, Gucia M, Jedrusiak A, Lipka K, Tanabe S (2003) Relationships between selenium and mercury in the fruiting bodies of some mushrooms growing in Poland. J Phys IV France 107:443–446

    Article  CAS  Google Scholar 

  • Falandysz J, Gucia M, Mazur A (2007) Content and bioconcentration factors of mercury by Parasol Mushroom Macrolepiota procera. J Environ Sci Health B 42:735–740

    Article  CAS  Google Scholar 

  • Falandysz J, Kunito T, Kubota R, Gucia M, Mazur A, Falandysz JJ, Tanabe S (2008) Some mineral constituents of Parasol Mushroom (Macrolepiota procera). J Environ Sci Health B 43:187–192

    Article  CAS  Google Scholar 

  • García MA, Alonso J, Melgar MJ (2009) Lead in edible mushrooms levels and bioaccumulation factors. J Hazard Mater 167(1–3):777–783

    Article  Google Scholar 

  • Giannaccini G, Betti L, Palego L, Mascia G, Schmid L, Lanza M, Mela A, Fabbrini L, Biondi L, Lucacchini A (2012) The trace element content of top-soil and wild edible mushroom samples collected in Tuscany, Italy. Environ Monit Assess 184:7579–7595

    Article  CAS  Google Scholar 

  • Gucia M, Falandysz J (2003) Total mercury content in Parasol Mushroom Macrolepiota procera from various sites in Poland. J Phys IV France 107:581–584

    Article  CAS  Google Scholar 

  • Gucia M, Jarzyńska G, Kojta AK, Falandysz J (2012a) Temporal variability in 20 chemical elements content of Parasol Mushroom (Macrolepiota procera) collected from two sites over a few years. J Environ Sci Health B 47:81–88

    Article  CAS  Google Scholar 

  • Gucia M, Jarzyńska G, Rafal E, Roszak M, Kojta AK, Osiej I, Falandysz J (2012b) Multivariate analysis of mineral constituents of edible Parasol Mushroom (Macrolepiota procera) and soils beneath fruiting bodies collected from Northern Poland. Environ Sci Pollut Res 19:416–431

    Article  CAS  Google Scholar 

  • Işıloğlu M, Yılmaz F, Merdivan M (2001) Concentrations of trace elements in wild edible mushrooms. Food Chem 73:169–175

    Article  Google Scholar 

  • Jain CK (2004) Metal fractionation study on bed sediments of River Yamuna, India. Water Res 38:569–578

    Article  CAS  Google Scholar 

  • Jarzyńska G, Gucia M, Kojta AK, Rezulak K, Falandysz J (2011) Profile of trace elements in Parasol Mushroom (Macrolepiota procera) from Tucholskie Forest. J Environ Sci Health B 46:741–751

    Google Scholar 

  • Kalač P (2009) Chemical composition and nutritional value of European species of wild growing mushrooms: a review. Food Chem 113:9–16

    Article  Google Scholar 

  • Kalač P (2010) Trace element contents in European species of wild growing edible mushrooms: a review for the period 2000–2009. Food Chem 122:2–15

    Article  Google Scholar 

  • Kalač P, Svoboda L (2000) A review of trace element concentrations in edible mushrooms. Food Chem 69:273–281

    Article  Google Scholar 

  • Kalač P, Nižnanská M, Bevilaqua D, Stašková I (1996) Concentrations of mercury, copper, cadmium and lead in fruiting bodies of edible mushrooms in the vicinity of a mercury smelter and a copper smelter. Sci Total Environ 177:251–258

    Article  Google Scholar 

  • Kalač P, Svoboda L, Havličková B (2004) Contents of cadmium and mercury in edible mushrooms, review. J Appl Biomed 2:15–20

    Google Scholar 

  • Kojta AK, Gucia M, Jarzyńska G, Lewandowska M, Zakrzewska A, Falandysz J, Zhang D (2011) Phosphorous and certain metals in Parasol mushrooms (Macrolepiota procera) and soils from the Augustowska forest and ELK region in north-eastern Poland. Fresen Environ Bull 20(11A):3044–3052

    CAS  Google Scholar 

  • Kojta AK, Jarzyńska G, Falandysz J (2012) Mineral composition and heavy metal accumulation capacity of Bay Bolete (Xerocomus badius) fruiting bodies collected near a former gold and copper mining area. J Geochem Explor 121:76–82

    Article  CAS  Google Scholar 

  • Krgović R, Trifković J, Milojković-Opsenica D, Manojlović D, Marković M, Mutić J (2015) Phytoextraction of metals by Erigeron Canadensis L. from fly ash landfill of power plant “Kolubara”. Environ Sci Pollut Res 22:10506–10515

    Article  Google Scholar 

  • Kubová J, Matúš P, Bujdoš M, Hagarová I, Medved J (2008) Utilization of optimized BCR three-step sequential and dilute HCl single extraction procedures for soil-plant metal transfer predictions in contaminated lands. Talanta 75:1110–1122

    Article  Google Scholar 

  • Kuldo E, Jarzyńska G, Gucia M, Falandysz J (2014) Mineral constituents of edible parasol mushroom Macrolepiota procera (Scop. Ex Fr.) Sing and soils beneath its fruiting bodies collected from a rural forest area. Chem Pap 68:484–492

    Article  CAS  Google Scholar 

  • Mleczek M, Magdziak Z, Goliński P, Siwulski M, Stuper-Szablewska K (2013) Concentrations of minerals in selected edible mushroom species growing in Poland and their effect on human health. Acta Sci Pol Technol Aliment 12(2):203–214

    CAS  Google Scholar 

  • Mossop KF, Davidson CM (2003) Comparison of original and modified BCR sequential extraction procedures for the fractionation of copper, iron, lead, manganese and zinc in soils and sediments. Anal Chim Acta 478:111–118

    Article  CAS  Google Scholar 

  • Nikkarinen M, Mertanen E (2004) Impact of geological origin on trace element composition of edible mushrooms. J Food Compos Anal 17:301–310

    Article  CAS  Google Scholar 

  • Nnorom IC, Jarzyńska G, Drewnowska M, Dryżalowska A, Kojta A, Pankavec S, Falandysz J (2013) Major and trace elements in sclerotium of Pleurotus tuber-regium (Ósū) mushroom—dietary intake and risk in southeastern Nigeria. J Food Compos Anal 29:73–81

    Article  CAS  Google Scholar 

  • Nováčková J, Fiala P, Chrastný V, Svoboda L, Kalač P (2007) Contents of mercury, cadmium and lead in edible mushrooms and in underlying substrates from a rural area with an occurrence of serpentines and amphiboles. Ekol Bratislava 26:322–329

    Google Scholar 

  • Ouzouni PK, Veltsistas PG, Paleologos EK, Riganakos KA (2009) Determination of metal content in wild edible mushroom species from regions of Greece. J Food Compos Anal 20:480–486

    Article  Google Scholar 

  • Petkovšek SAS, Pokorny B (2013) Lead and cadmium in mushrooms from the vicinity of two large emission sources in Slovenia. Sci Total Environ 443:944–954

    Article  Google Scholar 

  • Řanda Z, Kučera J (2004) Trace elements in higher fungi (mushrooms) determined by activation analysis. J Radioanal Nucl Chem 259:99–107

    Article  Google Scholar 

  • Rauret G, López-Sánchez JF, Sahuquillo A, Barahona E, Lachica M, Ure AM, Davidson CM, Gomez A, Lück D, Bacon J, Yli-Halla M, Muntau H, Quevauviller P (2000) Application of a modified BCR sequential extraction (three-step) procedure for the determination of extractable trace metal contents in a sewage sludge amended soil reference material (CRM 483), complemented by a three-year stability study of acetic acid and EDTA extractable metal content. J Environ Monit 2:228–233

    Article  CAS  Google Scholar 

  • Sarikurkcu C, Copur M, Yildiz D, Akata I (2011) Metal concentration of wild edible mushrooms in Soguksu National Park in Turkey. Food Chem 128:731–734

    Article  CAS  Google Scholar 

  • Sesli E, Tüzen M (1999) Levels of trace elements in the fruiting bodies of macrofungi growing in the East Black Sea region of Turkey. Food Chem 65:453–460

    Article  CAS  Google Scholar 

  • Sesli E, Tüzen M, Soylak M (2008) Evaluation of trace metal contents of some wild edible mushrooms from Black sea region, Turkey. J Hazard Mater 160:462–467

    Article  CAS  Google Scholar 

  • World Health Organization (WHO) (2011) Evaluation on certain food additives and contaminants 73rd Report of the Joint FAO/WHO Expert Committee on Food Additives. Technical Report Series No 960 Geneva (Switzerland)

  • Yamaç M, Yıldız D, Sarıkürkcü C, Çelikkollu M, Solak MH (2007) Heavy metals in some edible mushrooms from the Central Anatolia, Turkey. Food Chem 103:263–267

    Article  Google Scholar 

  • Zimmerman AJ, Weindorf DC (2010) Heavy metal analysis in soil by sequential extraction: a review of procedures. Int J Analyt Chem 2010:1–7

    Article  Google Scholar 

Download references

Acknowledgments

This research was financially supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, project nos. 172017 and 172030.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jelena Mutić.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible editor: Elena Maestri

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 223 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanović, V., Trifković, J., Mutić, J. et al. Metal accumulation capacity of parasol mushroom (Macrolepiota procera) from Rasina region (Serbia). Environ Sci Pollut Res 23, 13178–13190 (2016). https://doi.org/10.1007/s11356-016-6486-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6486-7

Keywords

Navigation