Skip to main content
Log in

Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The study was conducted to examine the effect of zinc nanoparticles on survival of worms Eisenia fetida and composition of the gut microflora. Analysis of the survival data has shown that the introduction of high doses of the nanoparticles causes death of worms in the second group with 35 % mortality rate and activates protective mechanisms realized as mucous film. DNA from the worm guts was extracted and 16S metagenomic sequencing was fulfilled using MiSeq (Illumina). Regarding the gut microflora of worms in the control group, high diversity of microorganisms (303 OTUs) was noted. Most of those belong to the taxa Firmicutes (51.9 % of the total high-quality united reads), Proteobacteria (24.1 % of the total), and Actinobacteria (13.3 % of the total), which were represented by numerous species of gen. Clostridium (C. saccharobutylicum, C. saccharoperbutylacetonicum, C. beijerinckii), gen. Pseudomonas (P. hydrogenovora, P. aeruginosa, and P. putida), gen. Bacillus (B. megaterium, B. silvestris), gen. Cellulomonas (B. megaterium, B. silvestris), and other numerically smaller genera. Adding of zinc nanoparticles to the substrate decreased the diversity of bacteria (78 OTUs) as well as percentage of bacteria belonging to the taxon Firmicutes (−41.6 %) and increased the proportion of Proteobacteria due to growth in abundance of gen. Verminephrobacter (+46 %) and gen. Ochrobactrum (+19.5 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aira M, Monroy F, Domínguez J (2006) Eisenia fetida (Oligochaeta, Lumbricidae) activates fungal growth, triggering cellulose decomposition during vermicomposting. Microb Ecol 52(4):738–747

    Article  Google Scholar 

  • Aira M, Monroy F, Domínguez J (2009) Changes in bacterial numbers and microbial activity of pig slurry during gut transit of epigeic and anecic earthworms. J Hazard Mater 162(2–3):1404–1407. doi:10.1016/j.jhazmat.2008.06.031

    Article  CAS  Google Scholar 

  • Ananpattarachai J, Boonto Y, Kajitvichyanukul P (2015) Visible light photocatalytic antibacterial activity of Ni-doped and N-doped TiO2 on Staphylococcus aureus and Escherichia coli bacteria. Environ Sci Pollut Res Int. doi:10.1007/s11356-015-4775-1

    Google Scholar 

  • Bel’kova NL, Dzyuba EV, Sukhanova EV, Khanaeva TA (2008) Adaptation of molecular genetic methods to study microorganisms associated with fish. Inland Water Biol 1(2):192–195. doi:10.1134/S1995082908020120

    Article  Google Scholar 

  • Byzov BA, Nechitailo TY, Bumazhkin BK, Kurakov AV, Golyshin PN, Zvyagintsev DG (2009) Culturable microorganisms from the earthworm digestive tract. Mikrobiology 78(3):360–368. doi:10.1134/S0026261709030151

    CAS  Google Scholar 

  • Davidson SK, Dulla GF, Go RA, Stahl DA, Pinel N (2014) Earthworm symbiont Verminephrobacter eiseniae mediates natural transformation within host egg capsules using type IV pili. Front Microbiol 5:546.1–10. doi:10.3389/fmicb.2014.00546

    Article  Google Scholar 

  • Drake HL, Horn MA (2007) As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes. Annu Rev Microbiol 61:169–189

    Article  CAS  Google Scholar 

  • Drake HL, Schramm A, Horn MA (2006) Earthworm gut microbial biomes: their importance to soil microorganisms, denitrification, and the terrestrial production of the greenhouse gas N2O. In: König H, Varma A (eds) Intestinal microorganisms of termites and other invertebrates. Springer, New York

    Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26(19):460–2461. doi:10.1093/bioinformatics/btq461

    Article  Google Scholar 

  • Edwards CA (2004) The importance of earthworms as key representatives of the soil fauna. In: Edwards CA (ed) Earthworm ecology, 2nd edn. CRC Press, Boca Raton, pp 3–11

    Chapter  Google Scholar 

  • Edwards CA, Fletcher KE (1988) Interactions between earthworms and microorganisms in organic matter breakdown. Agric, Ecosyst Environ 24(1–3):235–247. doi:10.1016/0167-8809(88)90069-2

    Article  Google Scholar 

  • El-Kereti MA, El-feky SA, Khater MS, Osman YA, El-sherbini e-SA (2013) ZnO nanofertilizer and He Ne laser irradiation for promoting growth and yield of sweet basil plant. Rec Pat Food Nutr Agric 5(3):169–181

    CAS  Google Scholar 

  • Fahmy SR, Abdel-Ghaffar F, Bakry FA, Sayed DA (2014) Ecotoxicological effect of sublethal exposure to zinc oxide nanoparticles on freshwater snail Biomphalaria alexandrina. Arch Environ Contam Toxicol 67(2):192–202. doi:10.1007/s00244-014-0020-z

    Article  CAS  Google Scholar 

  • Fajardo C, Ortíz LT, Rodríguez-Membibre ML, Nande M, Lobo MC et al (2012) Assessing the impact of zero-valent iron (ZVI) nanotechnology on soil microbial structure and functionality: a molecular approach. Chemosphere 86:802–808. doi:10.1016/j.chemosphere.2011.11.041

    Article  CAS  Google Scholar 

  • Ferreira RC, Papini S, de Andréa MM (2015) Bioavailability and influence of C-carbofuran on Eisenia andrei avoidance, growth and reproduction in treated natural tropical soils. J Environ Sci Health B 50(4):266–274. doi:10.1080/03601234.2015.999599

    Article  CAS  Google Scholar 

  • García-Gómez С, Babin M, Obrador A, Álvarez JM, Fernández MD (2015) Integrating ecotoxicity and chemical approaches to compare the effects of ZnO nanoparticles, ZnO bulk, and ZnCl2 on plants and microorganisms in a natural soil. Environ Sci Pollut Res 22(21):16803–16813. doi:10.1007/s11356-015-4867-y

    Article  Google Scholar 

  • Grumiaux F, Demuynck S, Pernin C, Leprêtre A (2015) Earthworm populations of highly metal-contaminated soils restored by fly ash-aided phytostabilisation. Ecotoxicol Environ Saf 113:183–190. doi:10.1016/j.ecoenv.2014.12.004

    Article  CAS  Google Scholar 

  • He L, Liu Y, Mustapha A, Lin M (2011) Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiol Res 166(3):207–215. doi:10.1016/j.micres.2010.03.003

    Article  CAS  Google Scholar 

  • Hirano T, Tamae K (2011) Earthworms and soil pollutants. Sensors (Basel) 11(12):11157–11167. doi:10.3390/s111211157

    Article  Google Scholar 

  • Hoet P, Bruske-Hohlfeld I, Salata O (2004) Nanoparticles—known and unknown health risks. J Nanobiotechnol 2:12. doi:10.1186/1477-3155-2-12

    Article  Google Scholar 

  • Hu CW, Lia M, Cui YB, Li DS, Chen J, Yang LY (2010) Toxicological effects of TiO2 and ZnO nanoparticles in soil on earthworm Eisenia fetida. Soil Biol Biochem 42:586–591. doi:10.1016/j.soilbio.2009.12.007

    Article  CAS  Google Scholar 

  • Huse SM, Mark Welch DB, Voorhis A, Shipunova A, Morrison HG et al (2014) VAMPS: a website for visualization and analysis of microbial population structures. BMC Bioinform 15:41

    Article  Google Scholar 

  • Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1):e1. doi:10.1093/nar/gks808

  • Krivolutskii DA (1994) Soil fauna in environmental control. Nauka, Moscow. (in Russian)

  • Li LZ, Zhou DM, Peijnenburg WJ, van Gestel CA, Jin SY, Wang YJ, Wang P (2011) Toxicity of zinc oxide nanoparticles in the earthworm, Eisenia fetida and subcellular fractionation of Zn. Environ Int 37(6):1098–1104. doi:10.1016/j.envint.2011.01.008

    Article  CAS  Google Scholar 

  • Li H, Chen Q, Zhao J, Urmila K (2015) Enhancing the antimicrobial activity of natural extraction using the synthetic ultrasmall metal nanoparticles. Sci Rep 5(5):11033. doi:10.1038/srep11033

    Article  CAS  Google Scholar 

  • Lin D, Xing B (2007) Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environ Pollut 150:243–250. doi:10.1016/j.envpol.2007.01.016

    Article  CAS  Google Scholar 

  • Liu Y, Yao T, Jiao N, Kang S, Xu B, Zeng Y, Huang S, Liu X (2009) Bacterial diversity in the snow over Tibetan Plateau Glaciers. Extremophiles 13:411–423. doi:10.1007/s00792-009-0227-5

    Article  CAS  Google Scholar 

  • Lok CN, Ho CM, Chen R, He QY, Yu WY, Sun H, Tam PK, Chiu JF, Che CM (2006) Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J Proteome Res 5:916–924. doi:10.1186/1477-3155-8-1

    Article  CAS  Google Scholar 

  • Lund MB, Holmstrup M, Lomstein BA, Damgaard Ch Schramm A (2010) Beneficial effect of verminephrobacter nephridial symbionts on the fitness of the earthworm Aporrectodea tuberculata. Appl Environ Microbiol 76(14):4738–4743. doi:10.1128/AEM.00108-10

    Article  CAS  Google Scholar 

  • Milani N, McLaughlin MJ, Stacey SP, Kirby JK, Hettiarachchi GM, Beak DG, Cornelis G (2012) Dissolution kinetics of macronutrient fertilizers coated with manufactured zinc oxide nanoparticles. J Agric Food Chem 60(16):3991–3998. doi:10.1021/jf205191y

    Article  CAS  Google Scholar 

  • Moore MN (2006) Do nanoparticles present ecotoxicological risks for the health of the aquatic environment? Environ Int 32:967–976. doi:10.1016/j.envint.2006.06.014

    Article  CAS  Google Scholar 

  • Nazarko MD, Lobanov VG (2007) Influence of the microflora composition on ecological balance of soils in Kuban. Izvestiya Vuzov. Pishchevaya Tekhnologiya 1:92–93 (in Russian)

    Google Scholar 

  • OECD (2004) OECD guideline for the testing of chemicals: earthworm reproduction test (Eisenia fetida). OECD, Paris

    Google Scholar 

  • Parthasarathi К, Ranganathan LS, Anandi V, Zeyer J (2007) Diversity of microflora in the gut and casts of tropical composting earthworms reared on different substrates. J Environ Biol 28(1):87–97

    CAS  Google Scholar 

  • Premanathan М, Karthikeyan К, Jeyasubramanian К et al. (2010) Selective toxicity of ZnO nanoparticles toward gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. 7(2):184-92. doi: 10.1016/j.nano.2010.10.001

  • Rahisuddin A-TSA, Khan Z, Manzoor N (2015) Biosynthesis of silver nanoparticles and its antibacterial and antifungal activities towards Gram-positive, Gram-negative bacterial strains and different species of Candida fungus. Bioprocess Biosyst Eng 38(9):1773–1781. doi:10.1007/s00449-015-1418-3

    Article  CAS  Google Scholar 

  • Reznichenko IS (2013) A comparative analysis of methods of cleansing the digestive system of earthworms for ecotoxicological studies on Eisenia fetida (Savigny, 1826). Fundamentalnaya Nauka 6:1156–1159 (in Russian)

    Google Scholar 

  • Rocheleau S, Arbour M, Elias M, Sunahara GI, Masson L (2015) Toxicogenomic effects of nano- and bulk-TiO2 particles in the soil nematode Caenorhabditis elegans. Nanotoxicology 9(4):502–512. doi:10.3109/17435390.2014.948941

    Article  CAS  Google Scholar 

  • Rosa CE, Bianchini A, Monserrat JM (2008) Antioxidant responses of Laeonereis acuta (Polychaeta) after exposure to hydrogen peroxide. Braz J Med Biol Res 41(2):117–121

    Article  Google Scholar 

  • Saccà ML, Fajardo C, Martinez-Gomariz M, Costa G, Nande M, Martin M (2014) Molecular stress responses to Nano-Sized Zero-Valent Iron (nZVI) particles in the soil bacterium Pseudomonas stutzeri. PLoS One 9(2):e89677. doi:10.1371/journal.pone.0089677

    Article  Google Scholar 

  • Song U, Lee S (2016) Phytotoxicity and accumulation of zinc oxide nanoparticles on the aquatic plants Hydrilla verticillata and Phragmites Australis: leaf-type-dependent responses. Environ Sci Pollut Res Int

  • Tiunov AV, Scheu S (2000) Microfungal communities in soil, litter and casts of Lumbricus terrestris L. (Lumbricidae): a laboratory experiment. Appl Soil Ecol 1 48(2):187–197. doi:10.1016/j.femsec.2004.01.007

    Google Scholar 

  • Tourinho PS, van Gestel CA, Lofts S et al. (2012) Metal-based nanoparticles in soil: fate, behavior, and effects on soil invertebrates. Environ Toxicol Chem 31(8):1679–92. doi: 10.1002

  • Toyoto K, Kimura M (2000) Microbial community indigenous to the earthworm Eisenia foetida. Biol Fertil Soils 31(3):187–190

    Article  Google Scholar 

  • Vijayakumar S, Vinoj G, Malaikozhundan B, Shanthi S, Vaseeharan B (2015) Plectranthus amboinicus leaf extract mediated synthesis of zinc oxide nanoparticles and its control of methicillin resistant Staphylococcus aureus biofilm and blood sucking mosquito larvae. Spectrochim Acta A Mol Biomol Spectrosc 137:886–891. doi:10.1016/j.saa.2014.08.064

    Article  CAS  Google Scholar 

  • Vijver MG, Vink JPM, Miermans CJH, van Gestel CAM (2003) Oral sealing using glue; a new method to distinguish between intestinal and dermal uptake of metals in earthworms. Soil Biol Biochem 35(1):125–132. doi:10.1016/S0038-0717(02)00245-6

    Article  CAS  Google Scholar 

  • Voropaev VN, Pashkov OM (2009) Zinc in soils and crop production steady experience. Bull Bryansk State Agric Acad 2:31–36 (in Russian)

    Google Scholar 

  • Wang F, Liu X, Shi Z, Tong R, Adams CA, Shi X (2016) Arbuscular mycorrhizae alleviate negative effects of zinc oxide nanoparticle and zinc accumulation in maizeplants—a soil microcosm experiment. Chemosphere 147:88–97. doi:10.1016/j.chemosphere.2015.12.076

    Article  CAS  Google Scholar 

  • Xu D, Li C, Wen Y, Liu W (2013) Antioxidant defense system responses and DNA damage of earthworms exposed to perfluorooctane sulfonate (PFOS). Environ Pollut 174:121–127. doi:10.1016/j.envpol.2012.10.030

    Article  CAS  Google Scholar 

  • Yakout SM, Mostafa AA (2015) A novel green synthesis of silver nanoparticles using soluble starch and its antibacterial activity. Int J Clin Exp Med 8(3):3538–3544

    CAS  Google Scholar 

  • Zhang J, Yu J, Ouyang Y, Xu H (2013) Responses of earthworm to aluminum toxicity in latosol. Environ Sci Pollut Res 20(2):1135–1141. doi:10.1007/s11356-012-0969-y

    Article  Google Scholar 

Download references

Acknowledgments

The study is supported by Russian Scientific Foundation, grant 14-36-00023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Еlena Yausheva.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yausheva, Е., Sizova, Е., Lebedev, S. et al. Influence of zinc nanoparticles on survival of worms Eisenia fetida and taxonomic diversity of the gut microflora. Environ Sci Pollut Res 23, 13245–13254 (2016). https://doi.org/10.1007/s11356-016-6474-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6474-y

Keywords

Navigation