Skip to main content

Photocatalytic processes assisted by artificial solar light for soil washing effluent treatment

Abstract

Contaminated soil has become a growing issue in recent years. The most common technique used to remove contaminants (such as metals) from the soil is the soil washing process. However, this process produces a final effluent containing chelating agents (i.e., ethylenediaminedisuccinic acid, also known as EDDS) and extracted metals (i.e., Cu, Fe, and Zn) at concentrations higher than discharge limits allowed by the Italian and Brazilian environmental law. Therefore, it is necessary to develop further treatments before its proper disposal or reuse. In the present study, soil washing tests were carried out through two sequential paths. Moreover, different artificial sunlight-driven photocatalytic treatments were used to remove Cu, Zn, Fe, and EDDS from soil washing effluents. Metal concentrations after the additional treatment were within the Brazilian and Italian regulatory limits for discharging in public sewers. The combined TiO2-photocatalytic processes applied were enough to decontaminate the effluents, allowing their reuse in soil washing treatment. Ecotoxicological assessment using different living organisms was carried out to assess the impact of the proposed two-step photocatalytic process on the effluent ecotoxicity.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Albanese S, De Luca ML, De Vivo B et al (2008) Relationships between heavy metal distribution and cancer mortality rates in the Campania Region, Italy. In: De Vivo B, Belkin HE, Lima A (eds) Environmental geochemistry: site characterization, data analysis and case histories. Elsevier, Amsterdam, London, New York, Sydney, Tokyo, pp 387–400

    Chapter  Google Scholar 

  • Andreozzi R, Caprio V, Insola A, Marotta R (2000) The oxidation of metol (N-methyl-p-aminophenol) in aqueous solution by UV/H2O2 photolysis. Water Res 34:463–472. doi:10.1016/S0043-1354(99)00183-9

    Article  Google Scholar 

  • Babay PA, Emilio CA, Ferreyra RE et al (2001) Kinetics and mechanisms of EDTA photocatalytic degradation with TiO2 under different experimental conditions. Int J Photoenergy 3:193–199

    Article  CAS  Google Scholar 

  • Bandala ER, Velasco Y, Torres LG (2008) Decontamination of soil washing wastewater using solar driven advanced oxidation processes. J Hazard Mater 160:402–407. doi:10.1016/j.jhazmat.2008.03.011

    Article  CAS  Google Scholar 

  • CONAMA (2009) Conselho Nacional de Meio Ambiente. Resolução n° 420, de 28 de dezembro de 2009. Publicado no DOU n° 249 de 30/12/2009. p 81–84.

  • CONAMA (2011) Conselho Nacional de Meio Ambiente. Resolução n° 430, de 13 de maio de 2011. Publicado no DOU no 92, de 16/05/2011, 89.

  • Cuppett JD, Duncan SE, Dietrich AM (2006) Evaluation of copper speciation and water quality factors that affect aqueous copper tasting response. Chem Senses 31:689–697. doi:10.1093/chemse/bjl010

    Article  CAS  Google Scholar 

  • D.Lgs.152/2006 (2006) Gazzetta Ufficiale n° 88, S.O. 96.

  • Dermont G, Bergeron M, Mercier G, Richer-Laflèche M (2008) Soil washing for metal removal: a review of physical/chemical technologies and field applications. J Hazard Mater 152:1–31. doi:10.1016/j.jhazmat.2007.10.043

    Article  CAS  Google Scholar 

  • Englehardt JD, Meeroff DE, Echegoyen L et al (2007) Oxidation of aqueous EDTA and associated organics and coprecipitation of inorganics by ambient iron-mediated aeration. Environ Sci Technol 41:270–276. doi:10.1021/es061605j

    Article  CAS  Google Scholar 

  • EPA (2003) Method 9045C, soil and waste pH, test methods for evaluating solid waste, physical/chemical methods

  • Huang W, Brigante M, Wu F et al (2012) Development of a new homogenous photo-Fenton process using Fe(III)-EDDS complexes. J Photochem Photobiol A Chem 239:17–23. doi:10.1016/j.jphotochem.2012.04.018

    Article  CAS  Google Scholar 

  • ISO 11348–3 (2008) Water quality—determination of the inhibitory effect of water samples on the light emission of Vibrio fischeri (Luminescent bacteria test)—part 3: method using freeze-dried bacteria.

  • ISO 6341 (2012) Water quality—determination of the inhibition of the mobility of Daphnia magna Straus (Cladocera, Crustacea)—acute toxicity test.

  • ISO 8692 (2012) Water quality—fresh water algal growth inhibition test with unicellular green algae.

  • Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68:167–182. doi:10.1093/bmb/ldg032

    Article  Google Scholar 

  • Liu Y, Lam MC, Fang HHP (2001) Adsorption of heavy metals by EPS of activated sludge. Water Sci Technol 43:59–66

    CAS  Google Scholar 

  • Liu X, Yu G, Han W (2007) Granular activated carbon adsorption and microwave regeneration for the treatment of 2, 4, 5-trichlorobiphenyl in simulated soil-washing solution. J Hazard Mater 147:746–751. doi:10.1016/j.jhazmat.2007.01.076

    Article  CAS  Google Scholar 

  • Molinari R, Gallo S, Argurio P (2004) Metal ions removal from wastewater or washing water from contaminated soil by ultrafiltration-complexation. Water Res 38:593–600. doi:10.1016/j.watres.2003.10.024

    Article  CAS  Google Scholar 

  • Mulligan CN, Yong RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207. doi:10.1016/S0013-7952(00)00101-0

    Article  Google Scholar 

  • OECD (2006) Guidelines for the testing of chemicals. 208: Terrestrial plant test: Seedling emergence and seedling growth test.

  • Pi C, Bianchi F, Fazzo L et al (2006) Cancer mortality in an area of Campania (Italy) characterized by multiple toxic dumping sites. Ann N Y Acad Sci 1076:449–461. doi:10.1196/annals.1371.067

    Article  Google Scholar 

  • Pintar A, Besson M, Gallezot P et al (2004) Toxicity to Daphnia magna and Vibrio fischeri of Kraft bleach plant effluents treated by catalytic wet-air oxidation. Water Res 38:289–300. doi:10.1016/j.watres.2003.09.027

    Article  CAS  Google Scholar 

  • Pociecha M, Lestan D (2009) EDTA leaching of Cu contaminated soil using electrochemical treatment of the washing solution. J Hazard Mater 165:533–539. doi:10.1016/j.jhazmat.2008.10.006

    Article  CAS  Google Scholar 

  • Satyro S, Marotta R, Clarizia L et al (2014a) Removal of EDDS and copper from waters by TiO2 photocatalysis under simulated UV–solar conditions. Chem Eng J 251:257–268. doi:10.1016/j.cej.2014.04.066

    Article  CAS  Google Scholar 

  • Satyro S, Race M, Marotta R et al (2014b) Simulated solar photocatalytic processes for the simultaneous removal of EDDS, Cu(II), Fe(III) and Zn(II) in synthetic and real contaminated soil washing solutions. J Environ Chem Eng 2:1969–1979. doi:10.1016/j.jece.2014.08.017

    Article  CAS  Google Scholar 

  • Satyro S, Race M, Di Natale F et al (2016) Simultaneous removal of heavy metals from field-polluted soils and treatment of soil washing effluents through combined adsorption and artificial sunlight-driven photocatalytic processes. Chem Eng J 283:1484–1493. doi:10.1016/j.cej.2015.08.039

    Article  CAS  Google Scholar 

  • Schulte EE (1995) Recommended soil organic matter tests. Recomm Soil Test Proced North East USA Northeast Reg Publ 52–60.

  • USEPA (2001) Method 3051, microwave assisted digestion of sediments. Sludges, Soils and Oils, Official Methods/US EPA Methods

    Google Scholar 

  • Vandevivere P, Hammes F, Verstraete W et al (2001) Metal decontamination of soil, sediment, and sewage sludge by means of transition metal chelant [S, S]-EDDS. J Environ Eng 127:802–811. doi:10.1061/(ASCE)0733-9372

    Article  CAS  Google Scholar 

  • Voglar D, Lestan D (2012) Electrochemical treatment of spent solution after EDTA-based soil washing. Water Res 46:1999–2008. doi:10.1016/j.watres.2012.01.018

    Article  CAS  Google Scholar 

  • Vohra M, Davis AP (2000) TiO2-Assisted photocatalysis of lead–EDTA. Water Res 34:952–964. doi:10.1016/S0043-1354(99)00223-7

    Article  CAS  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecology, Article ID 402647. doi:10.5402/2011/402647

  • Yan DYS, Yip TCM, Yui MMT et al (2010) Influence of EDDS-to-metal molar ratio, solution pH, and soil-to-solution ratio on metal extraction under EDDS deficiency. J Hazard Mater 178:890–894. doi:10.1016/j.jhazmat.2010.02.021

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was carried out within the project LIFE11 ENV/IT/000275 (ECOREMED). Satyro S. acknowledges her scholarship supported by the Brazilian National Counsel of Technological and Scientific Development (CNPq) (Process n. 201106/2012-4). The support received from Antonietta Siciliano in the toxicology analysis was highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suéllen Satyro.

Additional information

Responsible editor: Philippe Garrigues

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Satyro, S., Race, M., Marotta, R. et al. Photocatalytic processes assisted by artificial solar light for soil washing effluent treatment. Environ Sci Pollut Res 24, 6353–6360 (2017). https://doi.org/10.1007/s11356-016-6431-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-6431-9

Keywords

  • Soil washing effluent
  • Metal removal
  • Sacrificial photocatalysis
  • “Land of Fires”
  • Soil remediation